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Abstract: The major contribution of this paper is to introduce the fractional 
calculus used to develop a fractional-order model for the DC electrical drive 
and, based on it, to design a fractional adaptive controller. In such a context, 
two modifications of the conventional Model Reference Adaptive Control 
theory are presented. Based on simulation results obtained in Matlab/ 
Simulink, the benefits of fractional-order control are shown. Focus is on 
system performance increase. 
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1. Introduction 
 
Fractional calculus is a mature topic 

applicable to many fields, such as physics 
(Parada et al., 2007), electrical engineering 
(Bode, 1949), control systems (Axtell and 
Bise, 1990), robotics (Marcos et al., 2008), 
bioengineering (Magin, 2006) and other 
[7]. These theory, allow us to describe and 
model real systems more accurately than 
the classical “integer” methods. The 
reasoning of introducing such theory in 
adaptive control is motivated by the very 
good proven performances [2]. 

In [8], two ideas are presented to extend 
the conventional Model Reference 
Adaptive Control (MRAC) method, by 
using fractional-order parameter 
adjustment rule and fractional-order 
reference model. As one step further, all 
those methods are proposed to control a 
process (DC electrical drive), which in 
classical way has an integer order. To 

increase the performance of the system, 
besides the fractional adaptive control low 
used, we also developed a new model for 
the DC electrical drive, a fractional model 
one. So the situation presented in control 
theory is fractional-order process with 
fractional-order controller. The simulations 
made in Matlab/Simulink using FOTF 
(fractional-order transfer function) blocks 
confirm the efficiency of fractional adaptive 
control. 

 
2. Fractional Calculus Theory 
 

 Fractional calculus is a generalization 
of integration and differentiation to non- 
integer order fundamental operator α

ta D , 
where a and t are the limits of the 
operation and α  the fractional-order [3], 
[6]. 

The definition of integro-differential 
operator is: 
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In the current literature, two definitions 

are used for fractional differintegral, the 
Riemann-Liouville (RL) definition and the 
Grunwald-Letnikov (GL) [3], [5], which 
are presented below: 
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2) GL 
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Just as example, when applying the 

Laplace transform on RL definition, the 
fractional derivative has the following 
form: 
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Starting from the aforementioned theory, 

the fractional calculus can be applied in the 
control system theory as well. 

A fractional-order system that needs to 
be controlled can be described by a typical 
n-term linear fractional-order derivative 
equation in time domain [2]: 

0)()( 0α
0

α  tyDatyDa ttn
n  , (5) 

 
where ai, ni ,1  are real coefficient. 

By Laplace transform, we can get a 
fractional-order transfer function: 
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In general, a fractional-order dynamic 

system can be represented by a transfer 
function of the form: 
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The theory mentioned in this chapter is 

going to be applied on a certain process 
(DC electrical drive) as well as for 
developing a proper controller. 
 
3. Developing a Fractional-Order Model 

for the DC Electrical Drive 
 
The DC electrical drive model was 

determined experimental as it can be seen 
in [4]. The obtained model is a first order 
one model with the following transfer 
function:  
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A model reference with the below 

depicted transfer function is selected: 
 

.
14

1
)(
)(

)(






sas

b
sR
sY

sG
m

mm
m  (9) 

 
Starting from this point, we developed a 

fractional-order model for the DC 
electrical drive (Figure 1).  

Transfer function resulted is presented 
below [5]: 
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Fig. 1. Signal’s representation 

 
4. Designing a Fractional Controller for 

the DC Electrical Drive Fractional 
Model 

 
All the DC electrical drive parameters 

are unknown, so an adaptive control must 
be performed [1].  

The most known Model Reference 
Adaptive System (MRAS) scheme was 
developed by Whitaker and was introduced 
to control systems with unknown 
parameters or changing in time [1]. So the 
well-known MIT rule for MRAC is used to 
adjust or update the unknown parameter 
using gradient information.  

To adjust the DC electrical drive fractional 
model parameters, fractional calculus is 
introduced into MRAC in two ways [8]:  

1) by using fractional-order parameters 
adjustment rule;  

2) by using a fractional-order reference 
model. 

 
4.1. Controller Parameters Adjustment 

by Using Fractional-Order 
Adjustment Rule 

 
Taken into account the fractional calculus, 

the MIT rule [1] can be written as: 






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 eeJ

t αd
d ,  (11) 

 
where: 
 - is the controller parameter;  
e - the error between the process and the 

model outputs;  
 - the adaptation gain; 


e - the sensitivity derivative of the system; 

 - a real number denoting the fractional-
order derivative. 

The theory mentioned above can be 
applied more easily on the DC electrical 
drive fractional-order - see Equation (10) - 
when applying the fractional derivatives. 
Thus, the Equation (10) becomes: 
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The reference model from the Equation 

(9) is described by the following 
differential equation: 
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A perfect following of the reference 

model is achieved with a P adaptation low 
[1]: )()()( 00 tystrttu  , and the error of 
the system is: )()()( tytyte m . 

The sensitivity derivatives required by 
the adjustment mechanism are obtained by 
taking the partial derivatives of the error 
variable [4]. Eventually, after the 
approximation is done [4], the adjustment 
equations for the controller’s parameters 
can be obtained: 
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where, the parameter b is introduced in the 

adaptation gain  and 
t

p
d
d

 . Laplace 

transform can be applied on the fractional-
order derivatives from the Equation (14) 
[3], [5], resulting in: 
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The benefit of using this method is 

clearly demonstrated in Figure 2, with  
 = 0.75. For the adaptation gain, two 
values are chosen: 1 = 25 and 2 = 1. 

The error signal, which represents the 
difference between the output process and 
the output reference model, is reduced to 
zero (Figure 3). The stability is achieved 
more faster than the case when classic 
adjustment rule is used even if some small 
oscillations are present (observe the 
Figure 2 and Figure 3) [2], [4]. The block 
diagram for the MRAC scheme for 
adjusting the unknown parameters is 
shown in Figure 4. 

 
Fig. 2. The output signals using the 

fractional-order adjustment rule 
 

 
Fig. 3. The error yf (t)  ym (t)  

 

 

 
Fig. 4. Block diagram for a MRAC with a fractional-order adjustment rule 
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4.2. Controller Parameters Adjustment 
by Using Fractional Reference Model 

 
We introduce another modification to the 

classic MIT rule, by using a fractional-
order reference model besides the classic 
reference model [8]. With this method, the 
system performance is improved. 

The fractional-order reference model 
proposed is:  
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The adaptation low with the rate change 

of the parameters t0 and s0 depending only 
of the adaptation gain is going to be used  

in this case as well. Proceeding with the 
same steps like we did in the chapter 
above, the sensitive functions are: 
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Again, the benefit of this method is 

presented in Figure 5, where by using the 
same values of the adaptation gain (see 
Chapter above) error is reduced to zero 
(Figure 6).  

A block diagram for this method was 
implemented in Matlab/Simulink also 
(Figure 7).  

 

 
Fig. 5. The output signals using the 
fractional-order reference model 

 
Fig. 6. The error yf (t)  ymf (t) 

 

 
Fig. 7. Block diagram for a MRAC with a fractional-order reference model 
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5. Conclusions 
 

In this paper, by finding out the control law 
which takes the system to desired 
performance with improved behavior, our 
objectives are fulfilled. Simulation results 
confirmed the benefits of the proposed 
methods. However, when a fractional 
adaptive law using fractional-order 
adjustment is used, the tracking performance 
is almost perfect. Future work will consist in 
a stability analysis in the frequency domain. 
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