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Abstract: In this paper, we introduce a Takagi-Sugeno fuzzy model of the 
glucose-insulin system, derived from the well-known minimal model, with 
application in the design of fuzzy control systems for blood glucose 
concentration. The fuzzy model can be an alternative approach to the 
classical linearization method applied to the nonlinear minimal model, which 
is often used in the analytical design of such systems. The main benefit of the 
fuzzy model is the possibility to use it as the source for finding or tuning 
control rules of a fuzzy controller. For model validation, simulated time 
responses for step inputs of insulin and glucose are presented. 
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1. Introduction 
 
A Takagi-Sugeno (T-S) fuzzy model 

consists in a set of fuzzy if-then rules, 
which represent local linear input-output 
relations of a nonlinear system [8]. The 
overall dynamics of the nonlinear system is 
expressed, or approximated, by a fuzzy 
blending of these linear “sub-models”. The 
local operating conditions are defined by 
setting premise variables, which usually 
are time functions in the nonlinear process.  

It should be pointed out that premise 
variables are varying in wide domains, so 
that a “nominal” operating point is invalid 
for most of the time, or it is very difficult 
to even set one. In this case, some would 
suggest defining multiple operating points 
over the range of premise variables and 
then apply linearization techniques around 
each of those points. But the idea is similar 

to the main feature of a fuzzy model and it 
gives the reasons for searching and testing 
a T-S fuzzy model, as an alternative to the 
more classical linearization methods.  

Based on the aforementioned arguments, 
we searched for a T-S fuzzy model to 
approximate the well-known insulin to 
glucose minimal model. This describes the 
dynamics of blood glucose concentration 
under the effect of an exogenous insulin 
infusion rate, for a type 1 diabetic. In this 
case, without a careful diet, the glucose 
concentration can rise well above the basal 
value (81 mg/dL), which often considered 
as a kind of nominal value. On the other 
hand, the minimal model is quite simple 
but still nonlinear.  

Not least, an automatic control system 
for blood glucose concentration is an aim 
of numerous studies and experiments. A 
good part of them focused on using fuzzy 
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controllers, and many say that having a 
fuzzy model of the process would ease the 
design of a fuzzy control system.  

 
2. The Insulin-to-Glucose Minimal Model 

and Its Usual Linearization 
 

The minimal model describes the effect 
of exogenous insulin infusion rate and 
glucose disturbance over the blood glucose 
concentration, in type 1 diabetes mellitus 
(T1DM) patients. While several variations 
of it or similar compartment-based models 
are introduced in literature (see examples 
in [1] and [7]), the initial model is a 3-
order nonlinear model, described in [2-4] 
or [6] as follows: 
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where G(t) [mg/dL] is the blood glucose 
concentration, I(t) [mU/dL] is the blood 
insulin concentration, X(t) [1/min] is a 
variable proportional to the absorption of 
insulin in the insulin-excitable tissues ([5]), 
d(t) [mg/min] is a disturbance input of 
glucose and u(t) [mU/min] is the 
exogenous insulin deliver rate. The rest of 
the notations are constant parameters 
described in [2], [5], [9]. The values in the 
simulations done for this paper are those 
from [2] and they are listed in Table 1.  

In some conventional controller design 
methods, a linear model is obtained by 
linearizing the term X(t)G(t) in (1) with the 
Taylor series expansion about an operating 
point, which leads to:  
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The operating point is defined by Xa and 

Ga, which are mentioned as nominal values 

in [2], or average values in [3]. Further, the 
constant term XaGa + p1Gb is further 
neglected [2], leading to the linear Equation: 

 
)()()()()( 1 tadtXGtGXptG aa  . (3) 

 
This together with the second and the 

third equations in (1) forms the linear 
model of the insulin to glucose system, 
which is used in conventional controller 
design methods.  

One drawback of this linear model is the 
parameter Xa, for which we couldn’t find 
any argued value in the literature. In fact, 
many authors seem to ignore it completely, 
while others mention some arguments that 
seem a little unpractical. In the simulations 
done for this article, we simply adopted the 
value from [3]. In [2], it is mentioned that 
the linear model is equivalent to the 
nonlinear one at a specific time moment if 
Xa = X(t) and Ga = G(t), meaning that Xa is 
considered variable. Although this is 
mathematically correct, it suggests that a 
control system should be adapted with 
every iteration in the control algorithm 
based on the value of X(t). Even more, 
since it is not a measurable function, we 
can only have an estimated value of it.  

 
3. Deriving a Takagi-Sugeno Fuzzy Model 

of the Insulin-to-Glucose System 
 
In order to derive the T-S fuzzy model 

from the minimal model, we will adopt the 
blood glucose concentration G(t) as the 
premise variable to define local operating 
conditions. Next, its range [Gmin, Gmax], 
and a set of pattern values (points) within 
the range are chosen: iv , Ri ,1 . Please 
notice that there isn’t any analytical 
method for choosing the range and the 
patterns values, only arguments based on 
experience and process’s specific features.  

The patterns values may have different 
distributions over the range based on the 
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importance of certain local conditions. In 
the case of blood glucose control, having 
more pattern values close to the basal 
value Gb is motivated by the fact that the 
glucose concentration should be kept low, 
but not lower than the basal value.  

For each of the pattern values of G(t), the 
nonlinear term X(t)G(t) in (1) may be 
approximated with the linear one X(t)vi. In 
fuzzy logic, this substitution is valid when 
the measured value of blood glucose 
concentration is close to the pattern value. 
However, notice that the substitution 
G(t) = vi is only done in the nonlinear part 
of the initial model. Further, the constant 
term p1Gb is neglected for the same reasons 
as in [2], so the first equation in (1) finally 
becomes:  
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This, together with the second and the 

third equations in (1), forms a linear state-
space model: 
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where  T)()()()( tItXtGt x  is the state 
vector,  Ttutdt )()()( u  is the input 
vector and )]([)( tGt y  is the output 
vector. The rest of matrices are:  
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Notice that the linear model in (5) in 

totally valid if G(t) = vi. When G(t) is close 
to vi the linear model is partly valid, in a 

fuzzy logic meaning. Also, notice that, we 
have R linear models, one for each pattern 
value vi, which leads to expression of the 
T-S fuzzy model as a set of R rules: 

 
Rule i:  
 

if G(t) is close to vi  

       then 
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The validity of each model at any 

moment is determined by the truth value of 
the premise sentence “G(t) is close to vi”. 
Although intuitive to describe proximity 
by symmetric triangular functions, we 
considered that the closeness of any value 
G(t) to the pattern value vi is:  
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with its shape depicted in Figure 1. 

Given a measured value of blood glucose 
concentration, G(t), the final output of the 
T-S fuzzy model is: 
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with hi(t) being the normalized firing 
strength if the i-th rule in the fuzzy model, 
which in this case is:  
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Fig. 1. The function describing the 

closeness of the premise variable to one of 
the patter values, relative to the previous 

and the next 
  

4. As a Model Validation 
 
For model validation, several Matlab 

programs and Simulink models were used 
to simulate the time responses of: a) 
original minimal model; b) linearized 
model; c) linearized model without the 
term XaGa + p1Gb and d) proposed T-S 
fuzzy model. The values of all parameters 
in these simulations are listed in Table 1.  

The first round of simulations investigate 
the decrease of glucose concentration from 
the initial value of 300 [mg/dL] when an 
exogenous insulin step input is considered, 
u(t) = 1, and in the absence of any glucose 
disturbance input, d(t) = 0. The results 
depicted in Figure 2 show that the shape of 
the time response of the fuzzy T-S model 
(marked with “4”) is much closer to the 

time response of the original model than 
those of the linearized models.  

 

 
Fig. 2. Time responses of the simulated 
models for the step input in exogenous 

insulin 
 
Next, the time responses to a step input 

of glucose disturbance, d(t) = 1, without 
exogenous insulin, u(t) = 0, are simulated. 
This time, the initial glucose concentration 
is 81 [mg/dL]. The results are depicted in 
Figure 3. In this case, the response of the 
fuzzy model is identical to the original one. 
But the responses of the linearized models 
are incorrect as the glucose concentration 
in blood should keep rising when a 
constant doze is continuously added.  

The simulation results suggest that a 
control system which is designed based on 
the linearized model and conventional 
design methods may not be efficient when 
disturbance is present.  

 
The values of all parameter used in simulations         Table 1 

parameters 
of the minimal model 

Gb = 81 [mg/dL], p1 = 0 [1/min], p2 = 0.025 [1/min],  
p3 = 0.000013 [dL/(mU×min2], n = 5/54 [1/min],  

conversion factors a = b= 1/120 [1/dL] 

average values  Ga = 81 [mg/dL], Xa = 0.0054 [1/min] 

premise variable limits and 
pattern values 

Gmin = 0 [mg/dL], Gmax = 350 [mg/dL],  
}350 280, 220, 170, 130, 120, 100, 90, 80, 0,{iv , R = 10 

initial conditions  G0 = 300/81[mg/dL], X0 = 0 [1/min], I0 = 0 [mU/dL] 

simulation parameters simulation time: T = 10000 [sec] (aprox. 3 hours),  
sampling time: Ts = 1 [sec] (Ns = 10000 samples)  
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Fig. 3. Time responses of the simulated 

models for the step input in glucose 
disturbance 

 
For a more precise evaluation of models’ 

validity relative to the original minimal 
model, we calculated the integral of absolute 
error (IAE) between the response of the 
original model Gorig(t) and those of the other 
three, G(t), for all samples, namely: 
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The obtained values are listed in Table 2 

and they show that the time response of the 
fuzzy model we derived is much closer to 
the original, than the linear models used in 
many papers.  

 

Table 2 
The integral of absolute error for the 

simulated models 
 u(t) = 1 

d(t) = 0 
u(t) = 0 
d(t) = 1 

linear model ~5.9 ~40.0 
linear model without 
XaGa + p1Gb 

~6.6 ~48.0 

fuzzy model ~4.7 ~0.0 
 

5. Conclusions 
 
Although it is often used, the classical 

linearization of the well-known minimal 
model of the insulin-to-glucose system 
seems to lead to linear models that are not 
reflecting the real dynamics of the system. 

Indeed, the linear models are very useful for 
designing conventional control systems for 
blood glucose concentration through 
analytical methods. But, nowadays, the fuzzy 
control is mentioned as being a reliable 
solution for such application and the design 
of a fuzzy control system does not necessarily 
require a linear model of the process. Even 
more, a fuzzy model of the process offers a 
different description of the process’ 
dynamics, which is more useful for fuzzy 
controller design. Hence, deriving a fuzzy 
model bring important advantages, as in 
finding and/or fine tuning the control rules.  

The fuzzy model we proposed is derived 
from the well-known minimal model. It is 
simple, but it imitates the dynamics of the 
blood glucose concentration better than the 
linearized models used in many articles. 
To validate it, we simulated the responses 
of the original, the linearized and the fuzzy 
models, to exogenous insulin or glucose 
disturbance step inputs. The basic idea was 
to compare the newly introduced fuzzy 
model and the well-known linearized one, 
by checking which one is “closer” to the 
original minimal model. The validation of 
the fuzzy model is sustained by the idea 
that if the linearized model is accepted in 
today’s literature, then another model that 
better imitates the original one should be 
reliable for the same application.  

However, we should mention that the 
method used here to derive the T-S fuzzy 
model is strictly related to the original 
model and it is focused on the subsequent 
objective of using it in designing a fuzzy 
control system. Since it is only based on a 
simple substitution, the method may not be 
applicable at all for other nonlinear models.  
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