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Abstract: Reinforcement learning is considered to be one of the strongest 
paradigms in AI domain, which can be applied to teach machines how to 
behave through environment interaction. Recently the concept of deep 
reinforcement learning (DRL) was introduced and was tested with success in 
games like Atari 2600 or Go, proving the capability to learn a good 
representation of the environment. In this moment there are few 
implementations of DRL in the autonomous driving field. In this paper, we 
present the state of the art in deep reinforcement learning paradigm 
highlighting the current achievements for autonomous driving vehicles. 
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1.  Introduction 
 

An autonomous vehicle, capable of driving through various environments and to learn 
from unexpected situations, is one of the most important goals of AI. Driving a vehicle 
represents a complex task even for a human driver, thus autonomous driving represents a 
very difficult challenge, in terms of reliable and safety decisions that should be taken. 

Nowadays, due to the computation capabilities, deep neural networks are used to learn 
successful policies directly from high-dimensional sensor inputs. Convolutional neural 
networks (CNN) are used with success for traffic scene perception, being capable of 
object recognition, like pedestrian or vehicles, lane detection and also distance estimation. 

Currently, autonomous driving implementations are not based on computer vision 
techniques because of a lack of robustness. One of the most difficult challenges is to 
compress the input image into a representative feature vector. In this moment there are 
two approaches used to solve this problem: “mediated perception approaches” and 
”behavior reflex approaches” [4], [19]. 

Mediated perception approach parse the entire traffic scene which is represented as an 
input image and analyze it involving multiple sub-components for specific object 
recognition, like traffic signs, lanes, pedestrian, vehicles. Using the recognition results, a 
consistent world representation can be created and a machine learning (ML) based engine 
will take into account all the information for decision making. The task of scene 
understanding adds more complexity to neural networks (NN) algorithms and leads to 

                                                
1 Dept. of Automation, Transilvania University of Brașov. 



Bulletin of the Transilvania University of Braşov • Vol. 10 (59), No. 2 - 2017 • Series I 
 
196 

performances issues. To eliminate this disadvantage instead of detection a bounding box 
of an object, a distance prediction to the objects can be done [4]. 

Behavior reflex approaches utilize a regression to directly map sensors inputs to driving 
actions. This approach was published several years ago, back to the beginning of the 
1990s, when [12] used an NN to create a map from an image to a steering angle. This 
solution is implemented also by NVidia in [3] where CNN’s were chosen to map raw 
pixels from a single front-facing camera directly to steering commands. Known also as an 
end-to-end approach, this solution proved surprisingly powerful. To train a model, a 
human driver drives the car along the road, in different traffic scenarios. The system 
records the images from the mounted camera and also the steering commands. With 
minimum training data from humans, the system is able to learn how to drive in traffic on 
local roads with or without lane markings and on highways. Using this approach the 
system is able to operate in areas with unclear visual guidance, like in parking lots. 

The methods described above are based on supervised learning techniques that imply a 
big amount of data for training sessions. To have access to sufficient and complete 
datasets represents an impediment for the majority of researchers which are developing 
deep learning algorithms.  

Another approach for autonomous driving implementation is deep reinforcement 
learning (DRL), a concept that was first introduced at the end of 2013 by a small 
company from London, named DeepMind [10]. They demonstrated how this concept can 
be used to train an algorithm to play Atari 2600 video games by observing just the screen 
pixels and receiving a reward calculated taking into consideration the game score. The 
result was surprisingly good, taking in consideration that the games were different, with 
goals designed to be challenging for humans. Using the same model architecture, seven 
games were learned and three of them performed better than humans. The success of this 
algorithm, also known as Deep Q-network (DQN) [11], is due to the used architecture 
which combines two paradigms: reinforcement learning (RL) and deep learning (DL).  

In this article, we present the current state of the art in DRL. We want to present the 
current status, the related work and also the advantages and disadvantages in using the 
DRL concept. The concepts of RL and DRL are briefly described and the future work 
regarding applying DLR algorithms for a simulated autonomous car is presented.   

 
2. Related Work 

 
The objectives of this work are to present the current status of the research for deep 

reinforcement paradigm, concentrating more on the applicability in autonomous vehicles 
field. We briefly introduced the relevant papers which demonstrate the applicability of DQN 
algorithms for various applications and we have presented the RL and DRL methodologies. 

Deep reinforcement algorithms were first used to train artificial intelligence agents for 
playing seven Atari 2600 video games [10]. Due to the resounding results achieved using 
deep Q-learning algorithms the research community started to improve these algorithms 
in order to use them in other domains, like autonomous driving.  

DeepMind company continued the research started in [10] by improving the DQN 
algorithms in [11], adding a technique named experienced replay in which the agent 
experience at each time-step is stored into a replay memory. The algorithm stores the last 
N tuples in the replay memory and randomly samples uniformly when performing 
updates. In this way, the updates variance is reduced comparing with learning from 
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consecutive samples. Another improvement presented in this work was to use a separate 
network for generating the targets yj, cloning the network Q to obtain a target network Q̂ . 
This modification makes the algorithm more stable compared with the standard online Q-
learning. This new approach was applied with success for 49 Atari 2600 games. Even if 
every game is different, having different challenging tasks and objectives, the 
implemented DQN algorithm was capable of achieving human-level performance for 
most of the games and for some of them, even better performances. One of the most 
important achievements was the mastering of game Go with deep neural networks [14]. 
In this work, the neural networks were trained with a combination of supervised learning 
from human experts and reinforcement learning. The algorithm, named AlphaGo, 
achieved a 99.8% average winning rate against other Go programs and defeated the 
European Go champion by 5 games to 0. 

Another interesting and innovative approach to deep reinforcement learning was the 
work introduced in [20], where the concept of dueling network architectures for DRL was 
defined. A dueling network represents two separate estimators: one for the state value 
function and one for the state-dependent action advantage function. 

Starting from these implementations, Q-learning algorithms for autonomous driving 
were developed. In this moment there are not many implementations for autonomous 
vehicles using DRL. One of the first implementations was presented in [19], where a 
simulated autonomous vehicle was controlled using DQN methodology. A simple 
simulated racing game, written in JavaScript, was used to train an agent to control the 
simulated car. The agent successfully learned the turning operations after the training 
process, being able to navigate larger sections of the simulated sections without any 
crash. The algorithms were updated to adapt an infinitely larger state space and to learn 
an action-value function that provides the action that should be taken in a given state.  

Another approach for autonomous driving was recently published in [9], where an agent 
was created to perform the task of an autonomous car driving from raw sensor inputs. 
Using Keras DL framework and Vdrift (http://vdrift.net/), an open-source, cross-platform 
racing game, as the simulation environment, the designed DQN agent was able to 
navigate on specific tracks. 

A DRL framework was proposed also in [1], where TORCS, another open source game 
simulator, was used to train an agent to plan the sequence of driving giving the 
surrounding environmental conditions. The particularity of this paper is that the inputs for 
DQN algorithms are the environment states; instead of images raw sensor inputs are used, 
aggregated over time, and the output is the driving action. To achieve the space 
aggregation, two NN are necessary, one for sensor fusion and another for space features. 

 

 
Fig. 1. Reinforcement learning concept diagram 
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The paper with the most significant result is [8], where the success of Deep Q-learning 
was adapted to continuous actions domains. An actor-critic, model-free algorithm based 
on the deterministic policy gradient that can operate over continuous action spaces was 
introduced. TORCS was also used as simulation environment for autonomous driving, 
where the actions are acceleration, braking, and steering. The reward function provides a 
positive reward at each step for the velocity of the car projected along the track direction 
and a penalty of -1 for collisions. The algorithm developed is based on DPG algorithm 
[15] and the critic Q(s, a) is learned using the Bellman equation as in Q-learning. 
 
3. Background 

 
Reinforcement learning (RL) is an area of ML which was formulated in [16] as a model 

to provide the best policy an agent can follow. Software agents are concerned with taking 
actions in an environment so that the cumulative reward to be maximized. In Figure 1 can 
be observed a simplified version of RL concept that can be used to understand a traffic 
scene. Several successful implementations using RL were done in real time control 
systems like dynamic robot systems for manipulation and autonomous driving [7]. 

RL has two main threads: learning by trial and error and the problem of optimal control. 
The term of optimal control came into use in the 1950s and deals with the problem of 
controlling a system to achieve certain optimality criterion. One of the approaches to this 
problem was developed by Richard Bellman, using the concepts of a dynamical system’s 
state and an optimal return function. Also, Bellman introduced the discrete stochastic 
version of the optimal control problem known as Markovian decision processes. If the 
probabilistic behavior of a process in the future depends only on its present value, not on 
the sequence of events that preceded it has the Markov property. An RL task that satisfies 
the Markov property is called a Markov decision process (MDP), which comprises of a 
state space S, an action space A, a discount factor , a stationary transition dynamics 
model with density P than satisfies the Markov property ),,...,( 111 ttt asassp   and a 
reward function  ASasR tt :),(  [2]. Taking into consideration the information 
stated above, MDP can be defined as a tuple of (S, A, P, R, ). The formal description of a 
basic RL problem is a Markov decision processes. 

To evaluate how good it is for the agent to be in a given state (or how good it is to 
perform a given action in a given state), value functions are used. The notion of “how 
good” here is defined in terms of future rewards that can be expected [17]. The value of a 
state s under a policy   denoted as v(s) can be define using the Equation: 
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where Gt is the gain signal received from the environment. The agent scope is to 
maximize the gain, which in the simplest cases can be defined as a sum of rewards. 

Similarly, the equation for the action-value a  in state s , denoted as ),( asq  can be 
defined: 
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An important feature for the equations described above is the possibility to describe it 
using a recursive representation, where the state value depends on next state value. 
Resulted Equations are known as Bellman equations:   
 

 sSSvRsv ttt   |)()( 11 ,  (3) 
 

 aAsSASqRasq ttttt   ,|),(),( 111 .  (4) 
 

One of the most used algorithms to solve MPD problems is Q-learning, based on the 
Bellman equation. The actions are obtained for every state, based on the action-value 
function:  
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The algorithm starts from an initial state, and continue until the episode ends. In each 

step, the agent which is in the current state s , it takes an action following the policy p(s) 
and then observes the next environment state 's  together with the reward R. This 
algorithm in mainly used in DRL paradigm. 
 
4. Deep Reinforcement Learning Methodology 
 

Using RL in a situation approaching real-world complexity leads to tasks difficult to 
manage by agents; they must derive an efficient representation of the environment from 
high-dimensional sensory inputs. RL achieved success in a multitude of domains [13], [5] 
but the algorithms are limited to domains in which the features can be handcrafted or with 
fully observable state spaces. Recently, important progress has been made by combining 
RL with DL concept, creating an algorithm named “Deep Q Network” (DQN) [11] 
which, using unprocessed pixels from the input is capable of human level performances 
on several Atari video games. Deep CNNs were used to approximate the action-value 
function (5) using high dimensional images as states. In Figure 2 an example of deep q-
network architecture is presented. The network consists of three convolutional layers and 
two fully connected layers. Even if the advantages of using deep neural networks, 
comparing to the classical neural networks, are not clear defined, DNN were chose due to 
their capability to use graphical computing units for faster computation and also for some 
algorithmic improvements like drop out, regularization and parameter sharing (e.g. in 
convolutional layers). 

RL is considered to be unstable when using nonlinear approximators [18], such as 
DNN, because of the correlations presented in the sequence of observations and also 
because a small change of the action-value function (also known as Q function) may 
significantly change the policy and change the data distribution. In order to solve this 
inconvenience, a method of asynchronous training for Q-networks was released [11], a 
method called experience replay. The experience  1,,,  tttt srase , also known as 
transition [19], is stored in a buffer and is accessed uniformly during the training session. 
This approach leads to an optimization of the loss function, in which  are the parameters 
(that are, weights) of the Q-network at iteration i. 
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Fig. 2. Example of Deep Q-Network used in [11] 
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A second regularization technique applied also in [11] is to use two CNN. The second 
network proposed, is the “target” Q-network ( Q̂ ), which generates target value for the 
network’ loss function. The target network is updated after a specific number of steps. 
The loss function becomes: 
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4.1. Double Q-Learning (DDQN) 
 

To control an autonomous vehicle, an implementation of Double Q-Learning concept 
can be used [6]. Also known as Double deep Q-networks, this algorithm is an improved 
version of DQN, which is meant to reduce the DQNs problem of overestimating the value 
of an action in some situations by separating the behavior policy and the evaluation of 
actions. Double DQN replaces the original target iy evaluation function: 
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4.2. Deep Dueling Network Architecture 
 

Dueling architecture is an algorithm described in [20] that separates the representation 
of state values and action advantages. The network architecture consists of two streams 
that represent the value and advantages functions and shares a common convolutional 
learning feature module. The architecture can be seen in Figure 3. These two streams are 
aggregated via a specially designed layer and produce an estimation of the action-value 
function. This network, with two streams, is replacing the single stream Q-network which 
is used in the algorithms described above. Advantage updating was shown to converge 
faster that Q-learning in simple continuous time domains. The dueling architecture 
presents both the value V(s) and the advantages A(s, a) using a single deep model, whose 
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outputs combines these two functions to calculate the state action value Q(s, a). Because 
the output is the same like in the case DQN or DDQN, this network can be trained by any 
value iteration method. 

Considering the stream outputs as ),|( sV  and ),|,( asA , with  and  as 
convolutional network parameters, the aggregation module is constructed as follows: 
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Deep dueling network architecture was used to train an agent to learn 57 Atari games 

from raw pixels observations. The performance was 75% better comparing with Q-
networks, as is stated in [20]. This model became the state of the art for reinforcement 
learning. Until now, it was not applied for autonomous driving applications but can 
represent a solution for further developments. 

 

 
Fig. 3. Deep dueling network architecture with dual streams  

to estimate value and advantage function 
 

5. Conclusion 
 

Deep reinforcement learning paradigm can be used with success in various 
environments, developing agents capable of dealing with different tasks. As it was 
presented in this paper, DQN algorithms can be used for simple games, like Atari 2600, 
for more challenging tasks like AlphaGo and also in controlling of autonomous vehicles. 
We believe that DRL approach is a solution the existing problems in the autonomous 
driving field. The algorithms are capable of improving the decisions, learning from the 
unexpected situations. Even if in the automotive industry, supervised learning is the 
preferred, due to the safety regulation, the current advances in deep Q-learning prove that 
this concept can represent a solution for an autonomous vehicle in the future. 
 
6. Future Work 
 

The next steps in our research will be to develop an AI agent, reimplementing the 
algorithms stated in [19], using TORCS, an open source car racing game, as a simulation 
environment. Our research is done in the autonomous driving field, the scope is to deploy 
the DQN algorithms on a model car, to see how will behave in a real-world situation. The 
algorithm will use a pre-trained deep neural network model, the scope being not to train 
an agent from scratch, but to its improve the behavior.  
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