
Bulletin of the Transilvania University of Braşov • Vol. 11 (60) No. 1 - 2018
Series I: Engineering Sciences

SPECMAN-E TESTBENCH

Al. GROSU1 M. CARP2

Abstract: The scope of this document is to present a Verification
Environment (VE) and how useful is the functional verification of a specific
Device Under Test (DUT) in the process of developing and pouring into silicon
a digital integrated circuit. The Hardware Verification Language (HVL) used
for implementation is Specman. This paper will show the interconnection of
the DUT with our VE, coverage results and the bugs found. Also it will point
out that verifying the integrated circuit in an early stage will bring savings to
the project even though the release date of the chip is delayed.

Key words: Specman, Functional Verification, electronics.

1. Introduction

In electronic design automation, functional verification is the task of verifying that

the logic design conforms to specification. In everyday terms, functional verification
attempts to answer the question "Does this proposed design do what is intended?" This is
a complex task, and takes the majority of time and effort in most large electronic system
design projects [3].

Each digital integrated circuit must be functional verified before entering production
because today’s projects are very complex and these are exposed to many bugs. Most of
the time of a project (70-80%) is spent for functional verification and 20-30% for design
developing. Also for functional verification are needed more resources than on design
side, such as: people who work (2-3 verification engineers to a design engineer), simulator
licences (licences for running regressions) etc. Increasing the complexity of the integrated
circuits is done in a very fast way. In 1965, Gordon Moore, co-founder of Intel, issued the
law that today bears his name. Moore’s law can be formulated as follows: ”The number of
transistors in a chip will double at every 24 months” [2], because of complexity growing of
the integrated circuits, the number of existing cases to be verified increase exponential
and a specific verification language is needed.

Collett International Research did a study of the errors behind the re-spin process of
integrated circuits. The study shows that all of these iterations of the technological
process, more than 60% contain errors of logic or functionality.

These kinds of errors can be divided into 3 major categories Figure 1:
 Design errors (Register Transfer Level (RTL) development process), the cause of these

1 NoBug Consulting SRL, Braşov.
2 Dept. of Electronics and Computers, Transilvania University of Braşov.

Bulletin of the Transilvania University of Braşov • Vol. 11 (60) No. 1 - 2018 • Series I

18

errors incorrect or incomplete verification at design level, that’s why coverage
implementation is needed;
 Specification errors - through a rigorous design check, these types of errors can be

corrected even before synthesis phase;
 Reuse of modules and importing Intellectual Properties (IP), some of the logic or

functionality errors that led to the resumption of the manufacturing process were
generated by the errors already in the reused modules from the oldest generation of the
chip or in the imported IPs.

Fig. 1. Reasons of logical or functional errors [1]

Further, in this article will be described the developed components of our Test-Bench

(TB) (Figure 4) and a short description of the verified circuit, in this case the verified circuit
is System Pack Interface - Data Process(SPI_DP).

2. Scope

The scope of this paper is to demonstrate an easy way to implement a verification
environment for a small digital integrated circuit where each developed component can be
reused in another verification environment. The verification environment will follow a basic
and efficient structure which is presented in Figure 2. A basic verification environment has
the following components: driver, monitor, checker, predictor and scoreboard.

Fig. 2. Basic verification flow [1]

Grosu, Al., et al.: Specman-E Testbench 19

For the feature, this basic verification environment structure can be easy modified to a
specific methodology as e Reuse Methodology (eRM)[5] or Universal Verification
Methodology (UVM) [4], methodologies which are used currently in the industry.

The Universal Verification Methodology (UVM) is a standard being developed by
Accellera for the expressed purpose of fostering universal verification IP (VIP)
interoperability. Championed and supported by electronics companies throughout the
verification ecosystem, the UVM will increase productivity by eliminating the expensive
interfacing that typically slows VIP reuse [6].

3. DUT Functional Description

The SPI_DP is an interface for packets and cells transfer between a physical layer (PHY)
device and a link layer device. Data is received from the PHY layer on a maximum of 10
ports. The structure of the circuit is presented in Figure 3.

Fig. 3. SPI_DP architecture

It has the following features:
 Point to point connection(between single PHY and single Link Layer device);
 Support for 10 ports;
 In band port address, start/end of packet indication, error-control code;
 Source-synchronous double-edge clocking, 311 MHz minimum;
 Only a single port is able to transfer data on a specific time, which receives an enable

signal from ARBITER;

Bulletin of the Transilvania University of Braşov • Vol. 11 (60) No. 1 - 2018 • Series I

20

 The Port's data words are organized into data packets. The packets can be sent to
SPI_DP during a single transfer or in bursts. The EOP (End Of Packet) and SOP (Start Of
Packet) may be in the same burst or in different bursts. The last word in a burst is
signalled with a high level on the “ready_i”;
 The payload data words are transferred to the link layer in the same order as they

are received from the Port.

4. Proposed Verification Environment

The first step for developing a verification environment is to have a good
understanding of the design, and after that, the next step is to write a verification plan,
test plan and a coverage plan

The proposed structure of the verification environment is presented in Figure 4.

Fig. 4. SPI_DP verification architecture

The following components are implemented:
 Driver: drive all the input stimuli of DUT according to the input protocol interface.

The port which has packets t send, does a request and puts the data on bus when it is
enabled. When the last data from burst is sent, then it will de-assert the request and
assert the ready signals. A single driver is implemented for driving the input signals of
our device to be verified. This driver is instanciated for each input port.
 Monitor: the monitor block is looking on input signals of the port, sends the

collected data to Predictor and also it does the protocol checking. We have an instance
for each input port. The monitor block is independent from other worikng blocks and
samples continously the signals from the interface.
 Predictor: it has the responsibility to predict the output data of the verified circuit

depending of the collected data from monitor. The predicted data is send to Scoreboard
block to be mached with the collected data from DUT. It is able to predict a Round Robin
arbitration between the input ports.

Grosu, Al., et al.: Specman-E Testbench 21

 Scoreboard: it compares the predicted data with the result from DUT, if the collected
data is different than predicted data, it will signal a DUT error. The scoreboard structure
is presented in Figure 5.

Fig. 5. Scoreboard structure

 Coverage: the coverage block is implemented by following a specific coverage plan

document and it is used to have a metric of what we proposed to verify and what we
verified;
 Output monitor: it collects the received data from DUT and the collected data is

send to scoreboard block and also are implemented protocol checkers.
For a feature implementation, our drivers, monitors and coverage will be integrated in

an Universal Verification Component (UVC), which is something specific to UVM. The
basic structure of an UVC is presented in Figure 6.

Fig. 6. UVC

Using this kind of implementation has a lot of benefits such as: makes it modular and

simplifies maintenance, “virtual” sequences enable control at the system level, easy to
use test writer interface, architecuture exactly the same across all languages. The UVC
will be instanciated in VE and it will be connected with Predictor and Scoreboard
modules.

UVM has also a specific logger which makes the debugging of tests more easier
because messages are displayed with details of the agent kind which sends the message
and there can be used a specific color codding of each agent.

Bulletin of the Transilvania University of Braşov • Vol. 11 (60) No. 1 - 2018 • Series I

22

5. Conclusions

The deliverables from a verification environment are status reports which provide
information regarding the overall coverage and logs which tell us how each test generated
stimulus during running and if there are any errors. When no simulation errors occur, the
main results of the verification are provided by coverage. Coverage is a metric that shows
how well the proposed testing goals were covered by the developed test base.

For this verification environment the coverage reached a 99% value and 6 bugs were
caught in the design. This proves that the verification process is important in the
production of digital integrated circuits because the device is subjected to stimulus in a
virtual environment where it is cheap to bring any modifications to the RTL.

The way that this test-bench was designed makes it easy in the feature to bring
modifications if new features are added to the RTL and also few modifications need to be
made in order to align with a specific methodology such as eRM, UVM, the last one being
the latest one used in the industry.

References

1. Balint, A.: Arhitectura mediilor de verificare funcțională reutilizabile (Architecture of

Reusable Functional Verification Environments). In: Ph.D. Thesis, Transilvania
University of Braşov, Braşov, Romania, 2008.

2. Ioniță, F.: Specman-UVM Based Testbench. In: Bulletin of the Transilvania University
of Braşov (2017) Vol. 10 (59), No. 2, p. 175-180.

3. https://en.wikipedia.org/wiki/Functional_verification. Accessed: 02.04.2018.
4. https://en.wikipedia.org/wiki/Universal_Verification_Methodology.Accessed: 02.04.

2018.
5. https://en.wikipedia.org/wiki/ERM_(e_Reuse_Methodology). Accessed: 02.04.2018.
6. https://www.cadence.com/content/cadence-www/global/en_US/home/alliances/

standards-and-languages/universal-verification-methodology.html. Accessed: 23.03.2018.

