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MODAL AND INERTIAL DECOMPOSITION OF 

WIND-INDUCED ENERGY STATE 
 

F. BLAGA1   P. ALEXA1 
 

Abstract: This paper presents a numerical approach for investigating the 
energy state of a planar steel shear frame subjected to turbulent wind loads. 
The objective is to illustrate the modal and inertial distribution of induced and 
dissipated energy generated by time varying wind forces. Time histories of 
wind pressure were acquired for a time period of 600 s from a bluff body 
Computational Fluid Dynamic turbulence model. Structural response, induced 
by highly arbitrary wind loads, is expressed by modal participation functions 
numerically assessed via Duhamel convolution integral. Modal decomposition 
functions are further derived and integrated into induced and dissipated 
energy components. 
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1. Introduction 
 
Wind induced forces on Civil Engineering structures are largely applied as equivalent 

static loads [16] assuming the “quasi-steady” theory [9]. Quasi-steady assumption is the 
basis of many wind loading code provisions [4] where wind-induced pressure is assumed 
to follow wind velocity variations upstream the analysed structure and wind speed 
fluctuations around a measured mean is treated by “gust loading factor”, originally 
proposed by [5]. 

Air flow over rough surfaces such as urban areas leads to variation of the wind velocity 
both in time and space. Turbulent wind is currently simulated by experimental approach 
in wind tunnels or numerically predicted through Computational Fluid Dynamics (CFD). 
Several mathematical turbulence models [13] are integrated in finite element analysis 
software that allows for fluid flow simulation.  

The main scope of the paper is to highlight the variation in time and space of wind 
velocity and pressure with the use of CFD [2] and to transfer the generated wind dynamic 
forces to a planar flexible structure.  

Dynamic analysis of structures subjected to spatiotemporally varying wind forces [14] 
opens the door for an energy approach in structural assessment [10]. The time-history 
analysis performed in this paper focus on the modal distribution of induced and dissipated 
energy. The energy approach highlights new aspects of structural behaviour expanding 
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the range of dynamic modal analysis.  

Wind stochastic nature [12] leads to highly arbitrary dynamic loading. Structural 
dynamic response is, in this paper, expressed by the widely known Duhamel’s Integral or 
Convolution Integral. Simpson’s Rule is applied to numerical integrate over a definite time 
interval. 

 
2. Wind Flow Simulation 
2.1. CFD Model 

 
In order to simulate turbulent wind flow a bounded computational domain, Figure 1, 

was modelled. Turbulent wind flow is generated by several bluff bodies [7] positioned in 
the air stream.       

 

 

Fig. 1. Computational domain 

The inlet plane of the solution domain is assigned as 35 m/s air velocity way in, the 
bottom is assigned as a Category III rough surface [4], the upper and the lateral parts are 
defined as symmetry boundary conditions. 3D dimensions of the computational domain, 
Figure 2, are based on provisions available in the literature [15].  

Passive bluff-bodies A, B, and D were modelled in order to generate turbulent pressure 
on studied bluff-body C. Studied structure C have the spatial dimensions of an eleven 
storey structure, 43.60 m height and 30.0 m x 30.0 m ground surface. The solution domain 
mesh structure, Figure 3, consists of hexahedral elements [8]. Finer grid was generated 
close to the interest zone and a smooth transition from smaller to larger element sizes 
was achieved.  
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Fig. 2. Computational domain, plan view 

 

Fig. 3. Mesh structure 

2.2. CFD Analysis Results 
 

The simulated atmospheric boundary layer lead to turbulent flow around the square 
shaped structures. The instantaneous planar wind velocity distribution around the 
modelled bluff-bodies is illustrated in Figure 4. The turbulent flow is also highlighted by 
wind velocity variation over time. In Figure 5, simulated wind velocity in the upstream of 
the studied structure C is plotted over a 10 minutes interval at a time step of 1.0 s.  Along-
wind loads are related to the upstream and downstream faces of the studied structure. 
Simulated pressures are plotted in Figure 6 at 29.2 m height. On the upstream face of the 
studied structure C the load varies from pressure to suction while the downstream face is 
entirely subjected to suction. Wind speed dynamicity both in time and space leads to 
variable pressure on upstream and downstream faces and on the height of the structure. 
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Fig. 4. Velocity contour  

 

Fig. 5. Wind velocity at 25.60 m height 

 

Fig. 6. Wind pressure at 29.20 m height 
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3. Modal Distribution of Energy Response 
 
The simulated pressure in the CFD analysis [1] is transferred in a structural dynamics 

problem. An eleven storey planar steel frame is discretized as a dynamic system with 12 
degrees of freedom, lateral floor displacements, loaded with dynamic forces derived from 
simulated time-varying pressure. The objectives of the study is to analyse the share of the 
induced and dissipated wind energies from the inertial and modal points of view. 

 
3.1. Methodology 
 

A numerical procedure is developed to analyse the dynamic response of a shear steel 
frame. Twelve degrees of freedom, lateral floor displacements x1, x2,…, xm,…, x12, are 
considered as depicted in Figure 7. The mass of the structure is lumped at the floor levels 
m1, m2,…, mm,…, m12. The applied forces P1(t), P2(t),…, Pm(t),…, P12(t) are computed from 
CFD analysis as the sum of upstream and downstream pressure concentrated on a 6.0 m 
x 3.6 m surface, Figure 8.  

 

 

Fig. 7. Dynamic 12 DOF system 
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Fig. 8. Applied forces P7(t) 

 
3.2. Modal Analysis 

 
Free vibrations of linear multi degree of freedom (MDF) systems are governed by [3] 
 

𝑴𝑴 ∙ 𝒙̈𝒙(𝑡𝑡) + 𝑲𝑲 ∙ 𝒙𝒙(𝑡𝑡) = 0 (1) 
 
where 𝑴𝑴 is the lumped mass matrix 
 

                                                      𝑴𝑴 = �
𝑚𝑚1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑚𝑚12

� 

 
and 𝑲𝑲 is the stiffness matrix 
 

                                                     𝑲𝑲 = �
𝑘𝑘11 ⋯ 𝑘𝑘112
⋮ ⋱ ⋮

𝑘𝑘121 ⋯ 𝑘𝑘1212
� 

 
Displacements 𝒙𝒙(𝑡𝑡) time variation function is described by the harmonic function 
 

𝒙𝒙(𝑡𝑡) = 𝐴𝐴 ∙ sin(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝜑𝜑) ∙ 𝝓𝝓𝑛𝑛 (2) 
 

which leads to the matrix eigenvalue problem 
 

[𝑲𝑲−𝜔𝜔𝑛𝑛2 ∙ 𝑴𝑴] ∙ 𝝓𝝓𝑛𝑛 = 𝟎𝟎 (3) 
 

Natural circular frequencies 𝜔𝜔𝑛𝑛 and corresponding natural mode shapes of vibration 𝝓𝝓𝑛𝑛 
are determined by solving the eigenvalue and eigenvectors problem.  
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   𝝓𝝓𝑛𝑛 =

⎝

⎜
⎛

𝜙𝜙1,𝑛𝑛
⋮

𝜙𝜙𝑚𝑚,𝑛𝑛
⋮

𝜙𝜙12,𝑛𝑛⎠

⎟
⎞

 

 

 
Period of vibration 𝑇𝑇𝑛𝑛, cyclic frequencies 𝑓𝑓𝑛𝑛 and normalised mode shapes are presented 

in Figure 9 for the first three natural modes of vibration. 
 

 

Fig. 9. Natural mode shapes 

3.3. Response to Arbitrary Wind Forces  
 

Dynamic behaviour of the studied structure is governed by the equation of motion [11]  
 

𝑴𝑴 ∙ 𝒙̈𝒙(𝑡𝑡) + 𝑪𝑪 ∙ 𝒙̇𝒙(𝑡𝑡) + 𝑲𝑲 ∙ 𝒙𝒙(𝑡𝑡) = 𝑷𝑷(𝑡𝑡) (4) 
 

where 𝑪𝑪 is the Caughey mass and stiffness proportional damping matrix [3] 
 

𝑪𝑪 = 𝑴𝑴 ∙�𝑎𝑎𝑙𝑙 ∙
𝐽𝐽−1

𝑙𝑙=0

(𝑴𝑴−𝟏𝟏 ∙ 𝑲𝑲)𝑙𝑙 (5) 

  

𝜐𝜐𝑛𝑛 =
1
2
∙�𝑎𝑎𝑙𝑙 ∙
𝐽𝐽−1

𝑙𝑙=0

𝜔𝜔𝑛𝑛2𝑙𝑙−1 (6) 

  
for 𝐽𝐽 = 12 modes with damping ration 𝜐𝜐𝑛𝑛 = 0.05 for all modes. 𝑷𝑷(𝑡𝑡) collects the applied 
forces  
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𝑷𝑷(𝑡𝑡) =

⎝

⎜
⎛
𝑃𝑃1(𝑡𝑡)
⋮

𝑃𝑃𝑚𝑚(𝑡𝑡)
⋮

𝑃𝑃12(𝑡𝑡)⎠

⎟
⎞

 

 

 
and the displacements 𝒙𝒙(𝑡𝑡), velocities 𝒙̇𝒙(𝑡𝑡) and accelerations 𝒙̈𝒙(𝑡𝑡) vectors describe the 
total dynamic response. Modal and inertial decomposition of nodal displacements, 
velocities and accelerations is expressed by the following linear transformations  
 

𝑥𝑥𝑚𝑚,𝑛𝑛(𝑡𝑡) = 𝜙𝜙𝑚𝑚,𝑛𝑛 ∙ 𝜂𝜂𝑛𝑛(𝑡𝑡) (7) 
  

𝑥̇𝑥𝑚𝑚,𝑛𝑛(𝑡𝑡) = 𝜙𝜙𝑚𝑚,𝑛𝑛 ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) (8) 
  

𝑥̈𝑥𝑚𝑚,𝑛𝑛(𝑡𝑡) = 𝜙𝜙𝑚𝑚,𝑛𝑛 ∙ 𝜂̈𝜂𝑛𝑛(𝑡𝑡) (9) 
 
where 𝑚𝑚 denotes floor / mass position and 𝑛𝑛 denotes vibration mode. Modal, time 
dependent, coordinates 𝜂𝜂𝑛𝑛(𝑡𝑡) are evaluated via Duhamel convolution integral  
 

𝜂𝜂𝑛𝑛(𝑡𝑡) =
1

𝑀𝑀𝑛𝑛
∗ ∙ 𝜔𝜔𝑛𝑛∗

∙ �𝑃𝑃𝑛𝑛∗(𝜏𝜏) ∙ 𝑒𝑒−𝜐𝜐𝑛𝑛∙𝜔𝜔𝑛𝑛(𝑡𝑡−𝜏𝜏)
𝑡𝑡

0

∙ sin𝜔𝜔𝑛𝑛∗ (𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 (10) 

 
where 
 

𝑀𝑀𝑛𝑛
∗ = 𝝓𝝓𝑛𝑛

𝑇𝑇 ∙  𝑴𝑴 ∙ 𝝓𝝓𝒏𝒏 (11) 
  

𝑃𝑃𝑛𝑛∗(𝜏𝜏) = 𝝓𝝓𝑛𝑛
𝑇𝑇 ∙  𝑷𝑷(𝜏𝜏) (12) 

 
are the modal mass and force corresponding to 𝑛𝑛-th vibration mode and  
 

𝜔𝜔𝑛𝑛∗ = 𝜔𝜔𝑛𝑛 ∙ �1 − 𝜐𝜐𝑛𝑛2    (13) 
 
with damping ration 𝜐𝜐𝑛𝑛 = 0.05 for all modes. 
 
3.4. Energy Approach 
 

Modal response in energy components requires the dynamic equilibrium equation to 
be expressed in modal coordinates 
 

𝑀𝑀𝑛𝑛
∗ ∙ 𝜂̈𝜂𝑛𝑛(𝑡𝑡) + 𝐶𝐶𝑛𝑛∗ ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) + 𝐾𝐾𝑛𝑛∗ ∙ 𝜂𝜂𝑛𝑛(𝑡𝑡) = 𝑃𝑃𝑛𝑛∗(𝑡𝑡) 

 
(14) 
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where 
𝐶𝐶𝑛𝑛∗ = 𝝓𝝓𝑛𝑛

𝑇𝑇 ∙  𝑪𝑪 ∙ 𝝓𝝓𝒏𝒏 (15) 
  

𝐾𝐾𝑛𝑛∗ = 𝝓𝝓𝑛𝑛
𝑇𝑇 ∙  𝑲𝑲 ∙ 𝝓𝝓𝒏𝒏 (16) 

  
𝑃𝑃𝑛𝑛∗(𝑡𝑡) = 𝝓𝝓𝑛𝑛

𝑇𝑇 ∙  𝑷𝑷(𝑡𝑡) (17) 
 
are the modal damping, stiffness and force corresponding to 𝑛𝑛-th vibration mode. 

Multiplying equation (14) by 𝑑𝑑𝑑𝑑𝑛𝑛(𝑡𝑡) = 𝜂̇𝜂𝑛𝑛(𝑡𝑡)𝑑𝑑𝑑𝑑 leads to  
 
𝑀𝑀𝑛𝑛
∗ ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̈𝜂𝑛𝑛(𝑡𝑡) + 𝐶𝐶𝑛𝑛∗ ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) + 𝐾𝐾𝑛𝑛∗ ∙ 𝜂𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) = 𝑃𝑃𝑛𝑛∗(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) (18) 

 
Integration of equation (18) leads to energy balance equation 
 
∫ 𝑀𝑀𝑛𝑛

∗ ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̈𝜂𝑛𝑛(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑𝑡𝑡
0 + ∫ 𝐶𝐶𝑛𝑛∗ ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡)𝑡𝑡

0 ∙ 𝑑𝑑𝑑𝑑 +  

+� 𝐾𝐾𝑛𝑛∗ ∙ 𝜂𝜂𝑛𝑛(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑
𝑡𝑡

0
= � 𝑃𝑃𝑛𝑛∗(𝑡𝑡) ∙ 𝜂̇𝜂𝑛𝑛(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑

𝑡𝑡

0
 

(19) 

 
in generalised modal coordinates 𝜂𝜂𝑛𝑛 with 𝐸𝐸𝜂𝜂𝑛𝑛

𝐾𝐾 -kinetic energy, 𝐸𝐸𝜂𝜂𝑛𝑛
𝐷𝐷 -dissipated energy, 𝐸𝐸𝜂𝜂𝑛𝑛

𝑆𝑆 -
strain energy, 𝐸𝐸𝜂𝜂𝑛𝑛

𝐼𝐼 -input energy.  
 

𝐸𝐸𝜂𝜂𝑛𝑛
𝐾𝐾 + 𝐸𝐸𝜂𝜂𝑛𝑛

𝐷𝐷 + 𝐸𝐸𝜂𝜂𝑛𝑛
𝑆𝑆 = 𝐸𝐸𝜂𝜂𝑛𝑛

𝐼𝐼  (20) 
 

Input and dissipated energy components are computed in this paper having the forms: 
 

𝐸𝐸𝜂𝜂𝑛𝑛
𝐼𝐼 = � 𝑃𝑃𝑛𝑛∗(𝜏𝜏) ∙ 𝜂̇𝜂𝑛𝑛(𝜏𝜏) ∙ 𝑑𝑑𝑑𝑑

𝑡𝑡

0
 (21) 

  
𝐸𝐸𝜂𝜂𝑛𝑛
𝐷𝐷 = ∫ 𝐶𝐶𝑛𝑛∗ ∙ 𝜂̇𝜂𝑛𝑛(𝜏𝜏) ∙ 𝜂̇𝜂𝑛𝑛(𝜏𝜏)𝑡𝑡

0 ∙ 𝑑𝑑𝑑𝑑    (22) 
 
The above two energy components are, further, computed by numerical differentiation 

of 𝜂𝜂𝑛𝑛(𝑡𝑡) [17] and integrated via Simpson rule [6]. 
Inertial energy distribution is determined by the following linear transformations for 

every 𝑛𝑛 mode shape, 
 

𝐸𝐸𝑚𝑚,𝑛𝑛
𝐼𝐼 = 𝜙𝜙𝑚𝑚,𝑛𝑛 ∙ 𝐸𝐸𝜂𝜂𝑛𝑛

𝐼𝐼    (23) 
  

𝐸𝐸𝑚𝑚,𝑛𝑛
𝐷𝐷 = 𝜙𝜙𝑚𝑚,𝑛𝑛 ∙ 𝐸𝐸𝜂𝜂𝑛𝑛

𝐷𝐷  (24) 
 
and modal decomposition of input and dissipated energy for the entire structure is 
defined as follows.  
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𝐸𝐸𝑛𝑛𝐼𝐼 = ��𝐸𝐸𝑚𝑚,𝑛𝑛
𝐼𝐼 �

𝑚𝑚

𝑖𝑖=1

 (25) 

  
𝐸𝐸𝑛𝑛𝐷𝐷 = ∑ �𝐸𝐸𝑚𝑚,𝑛𝑛

𝐷𝐷 �𝑚𝑚
𝑖𝑖=1       (26) 

 
  Total energy response is acquired by linear combination of modal 𝐸𝐸𝑛𝑛𝐼𝐼  and 𝐸𝐸𝑛𝑛𝐷𝐷 

components.   
 

𝐸𝐸𝐼𝐼 = ∑ 𝐸𝐸𝑛𝑛𝐼𝐼𝑛𝑛
𝑖𝑖=1            (27) 

  
𝐸𝐸𝐷𝐷 = ∑ 𝐸𝐸𝑛𝑛𝐷𝐷𝑛𝑛

𝑖𝑖=1     (28) 
 

4. Numerical Results 
 
Based on above theoretical development, further, the numerical results of the inertial 

and modal distributions of both, induced and dissipated energies are presented.  
First, the total values of the two energy are presented graphically in Figure 10. It may 

be seen that a small value (cca. 7 kNm) of the total induced energy (cca. 50.00 kNm) is 
dissipated via natural damping level of 5% of critical damping ratio.  
 

 

Fig. 10. Total energy balance 

 
4.1. Modal distribution 
 

Consistent with the objective of analysing modal distribution of the two energy 
components, the energy amounts associated to natural fundamental vibration mode are 
presented in Figure 11 against the total energy values.    
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Fig. 10. Total vs normal mode 1 energy balance 

Numerically, an amount of cca. 37.00 kNm of a total amount (cca. 50.00 kNm) is induced 
by the natural fundamental mode of vibration. In percentage terms, it represents 74%, 
while the remaining 26% is induced via the upper natural modes. These results of energy 
modal distribution are consistent with the modal distribution of dynamic response in 
lateral displacements. A detailed picture of modal distribution of both, induced and 
dissipated energies in the first three natural modes of vibration are presented in Figure 
11. Again, the lion share of fundamental natural mode is emphasized. 
 
4.2. Inertial distribution 
 

Associated inertial state of planar vibratory motion induced by wind action is expressed 
by the lumped floor masses (Figure 7). Based on theoretical development expressed via 
equations 23, 24, the following graphically presented results emphasize inertial 
distributions of the two energy components: induced energy in Figure 11 and dissipated 
energy in Figure 12. 

 

 

Fig. 11. Inertial distribution of induced energy 
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Fig. 12. Inertial distribution of dissipated energy 
 
It must be mentioned that the lumped masses along the height of the structure are, 

practically equal. Therefore, the differentiating parameter in inertial distribution is 
expected to be, mainly, the velocities of masses. Indeed, as it can be seen in Figure 11 and 
Figure 12 the largest amounts of both, induced and dissipated energies are associated 
with upper masses that vibrate with the highest velocities. 

Referring to induced energy, mass m1 takes no less than 15% of the total induced 
amount. The same ratio of the dissipated energy via mass m1 may be concluded. 
Emphasizing the share of the first three mases, a total of 22.5 kNm (45%) of induced 
energy is generated at the top three levels of the structure while, the dissipated ratio of 
the same masses is 42 % of the total dissipated energy. 
 
5. Conclusions 
 

The contribution fulfils two main objectives associated to dynamic response of multi-
storey steel structures to dynamic wind action: an energy formulation of the dynamic 
response in terms of induced energy and dissipated energy via intrinsic linear viscous 
damping and the inertial and modal distributions of the energy state. 

Traditional mechanical state of structural dynamic response is made up of the two 
classical components: static (sectional and unit stresses) and kinematic (displacements 
and deformations). Adding energy state to these components of the dynamic response, 
an augmented mechanical state is obtained. The authors of the present contribution are 
aware of the fact that the static and kinematic states are so popular that from students 
up to highly qualified engineers, everybody knows the associated numerical values of 
these parameters. It is, indeed, difficult to translate such a well-established fact into 
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energy terms. Nevertheless, the energy state enjoys a few advantages in expressing the 
dynamic response of a structure: it is a scalar quantity and, most important, it’s synthetic 
nature includes the general and sectional geometry, the elastic state, the inertial state, 
the damping state and the dynamic actions all expressed via stiffness, mass, damping and 
forces matrices.  Adding the energy state of the dynamic response to the traditional 
mechanical state is the main contribution of the present work. 
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