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MODAL AND INERTIAL DECOMPOSITION OF
WIND-INDUCED ENERGY STATE

F. BLAGA! P. ALEXA?!

Abstract: This paper presents a numerical approach for investigating the
energy state of a planar steel shear frame subjected to turbulent wind loads.
The objective is to illustrate the modal and inertial distribution of induced and
dissipated energy generated by time varying wind forces. Time histories of
wind pressure were acquired for a time period of 600 s from a bluff body
Computational Fluid Dynamic turbulence model. Structural response, induced
by highly arbitrary wind loads, is expressed by modal participation functions
numerically assessed via Duhamel convolution integral. Modal decomposition
functions are further derived and integrated into induced and dissipated
energy components.
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1. Introduction

Wind induced forces on Civil Engineering structures are largely applied as equivalent
static loads [16] assuming the “quasi-steady” theory [9]. Quasi-steady assumption is the
basis of many wind loading code provisions [4] where wind-induced pressure is assumed
to follow wind velocity variations upstream the analysed structure and wind speed
fluctuations around a measured mean is treated by “gust loading factor”, originally
proposed by [5].

Air flow over rough surfaces such as urban areas leads to variation of the wind velocity
both in time and space. Turbulent wind is currently simulated by experimental approach
in wind tunnels or numerically predicted through Computational Fluid Dynamics (CFD).
Several mathematical turbulence models [13] are integrated in finite element analysis
software that allows for fluid flow simulation.

The main scope of the paper is to highlight the variation in time and space of wind
velocity and pressure with the use of CFD [2] and to transfer the generated wind dynamic
forces to a planar flexible structure.

Dynamic analysis of structures subjected to spatiotemporally varying wind forces [14]
opens the door for an energy approach in structural assessment [10]. The time-history
analysis performed in this paper focus on the modal distribution of induced and dissipated
energy. The energy approach highlights new aspects of structural behaviour expanding
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the range of dynamic modal analysis.

Wind stochastic nature [12] leads to highly arbitrary dynamic loading. Structural
dynamic response is, in this paper, expressed by the widely known Duhamel’s Integral or
Convolution Integral. Simpson’s Rule is applied to numerical integrate over a definite time
interval.

2. Wind Flow Simulation
2.1. CFD Model

In order to simulate turbulent wind flow a bounded computational domain, Figure 1,
was modelled. Turbulent wind flow is generated by several bluff bodies [7] positioned in
the air stream.

Fig. 1. Computational domain

The inlet plane of the solution domain is assigned as 35 m/s air velocity way in, the
bottom is assigned as a Category Ill rough surface [4], the upper and the lateral parts are
defined as symmetry boundary conditions. 3D dimensions of the computational domain,
Figure 2, are based on provisions available in the literature [15].

Passive bluff-bodies A, B, and D were modelled in order to generate turbulent pressure
on studied bluff-body C. Studied structure C have the spatial dimensions of an eleven
storey structure, 43.60 m height and 30.0 m x 30.0 m ground surface. The solution domain
mesh structure, Figure 3, consists of hexahedral elements [8]. Finer grid was generated
close to the interest zone and a smooth transition from smaller to larger element sizes
was achieved.
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Fig. 2. Computational domain, plan view
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Fig. 3. Mesh structure
2.2. CFD Analysis Results

The simulated atmospheric boundary layer lead to turbulent flow around the square
shaped structures. The instantaneous planar wind velocity distribution around the
modelled bluff-bodies is illustrated in Figure 4. The turbulent flow is also highlighted by
wind velocity variation over time. In Figure 5, simulated wind velocity in the upstream of
the studied structure Cis plotted over a 10 minutes interval at a time step of 1.0 s. Along-
wind loads are related to the upstream and downstream faces of the studied structure.
Simulated pressures are plotted in Figure 6 at 29.2 m height. On the upstream face of the
studied structure C the load varies from pressure to suction while the downstream face is
entirely subjected to suction. Wind speed dynamicity both in time and space leads to
variable pressure on upstream and downstream faces and on the height of the structure.
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Fig. 6. Wind pressure at 29.20 m height
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3. Modal Distribution of Energy Response

The simulated pressure in the CFD analysis [1] is transferred in a structural dynamics
problem. An eleven storey planar steel frame is discretized as a dynamic system with 12
degrees of freedom, lateral floor displacements, loaded with dynamic forces derived from
simulated time-varying pressure. The objectives of the study is to analyse the share of the
induced and dissipated wind energies from the inertial and modal points of view.

3.1. Methodology

A numerical procedure is developed to analyse the dynamic response of a shear steel
frame. Twelve degrees of freedom, lateral floor displacements xi, Xa,..., Xm,..., X12, are
considered as depicted in Figure 7. The mass of the structure is lumped at the floor levels
M1, My,..., Mm,..., M12. The applied forces Pi(t), Pa(t),..., Pm(t),..., P12(t) are computed from
CFD analysis as the sum of upstream and downstream pressure concentrated on a 6.0 m
x 3.6 m surface, Figure 8.
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Fig. 8. Applied forces P(t)

3.2. Modal Analysis
Free vibrations of linear multi degree of freedom (MDF) systems are governed by [3]
M-x(t)+K-x(t) =0 (1)

where M is the lumped mass matrix
ml ves 0
M = < E . S )
0 - my,

kq

and K is the stiffness matrix
Lok,
K = : : :
kiz, - kiz,,
Displacements x(t) time variation function is described by the harmonic function

x(t) = A-sin(w,t + @) - Py, (2)

which leads to the matrix eigenvalue problem
K —w?-M]-¢,=0 (3)

Natural circular frequencies w,, and corresponding natural mode shapes of vibration ¢,
are determined by solving the eigenvalue and eigenvectors problem.
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Period of vibration T,,, cyclic frequencies f,, and normalised mode shapes are presented

in Figure 9 for the first three natural modes of vibration
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Fig. 9. Natural mode shapes

3.3. Response to Arbitrary Wind Forces

Dynamic behaviour of the studied structure is governed by the equation of motion [11]
M-x%(t)+C-x(t)+ K-x(t) = P(t) (4)

where C is the Caughey mass and stiffness proportional damping matrix [3]

J-1
C=M- Za, (M~1-K)! (5)

DTS

for ] = 12 modes with damping ration v, = 0.05 for all modes. P(t) collects the applied

(6)

Nlr—\

forces
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Pl.(t)
PO = Pu(® |
P12.(t)
and the displacements x(t), velocities x(t) and accelerations X(t) vectors describe the

total dynamic response. Modal and inertial decomposition of nodal displacements,
velocities and accelerations is expressed by the following linear transformations

Xmn (t) = ¢m,n “Mn (t) (7)
xm,n (t) = ¢m,n “Tn (t) (8)
%m,n (t) = ¢m,n “Tin (t) (9)

where m denotes floor / mass position and n denotes vibration mode. Modal, time
dependent, coordinates 1,,(t) are evaluated via Duhamel convolution integral

t

Ma(t) = m f P (1) - e Vvneon(t=0) . sin @ (t — T)dt (10)
0
where
My =5 M-y (11)
Pi(0) = ¢ P(D) (12)

are the modal mass and force corresponding to n-th vibration mode and

Wy = Wp 1 —02 (13)
with damping ration v,, = 0.05 for all modes.
3.4. Energy Approach

Modal response in energy components requires the dynamic equilibrium equation to
be expressed in modal coordinates

My, - 1in (8) + Co - 11 (8) + Ky -1 (8) = P (1) (14)
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where
Ch=¢n C ¢, (15)
Ky=¢h K ¢, (16)
Py () = @7, - P(0) (17)

are the modal damping, stiffness and force corresponding to n-th vibration mode.
Multiplying equation (14) by dn,,(t) = 1, (t)dt leads to

My, - 11 () - 10 (©) + G 11 () * 10 (0) + Ky 1 (6) - 110 (©) = By () 0 (®)  (18)
Integration of equation (18) leads to energy balance equation

Jy My -1 (8)  Fi () - dt + [ G+ 11 (£) - 1, (8) - dt +

t t (19)
+f K;;-nn(t)-ﬁn(t)-dt=f PE(E) - i (6) - dt
0 0

in generalised modal coordinates 1,, with E,‘;(n—kinetic energy, E,?n-dissipated energy, E,?n—
strain energy, E,’,n-input energy.

En, + En, + En, = En, (20)

Input and dissipated energy components are computed in this paper having the forms:
t

B, = [ @ (- dr 1)
0

t v .
E??n = fo Cn (7)1 (7) - dt (22)
The above two energy components are, further, computed by numerical differentiation
of n,,(t) [17] and integrated via Simpson rule [6].

Inertial energy distribution is determined by the following linear transformations for
every n mode shape,

E7111,n = ¢m,n ' E7I;n (23)
Er?l,n = ¢m,n ’ Erl])n (24)

and modal decomposition of input and dissipated energy for the entire structure is
defined as follows.
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m

Eh =) [Ehal (25)
i=1

Ep = Xia|Emal (26)

Total energy response is acquired by linear combination of modal E, and EZ
components.

El'=3%" El (27)
EP =Y%M EP (28)
4. Numerical Results

Based on above theoretical development, further, the numerical results of the inertial
and modal distributions of both, induced and dissipated energies are presented.

First, the total values of the two energy are presented graphically in Figure 10. It may
be seen that a small value (cca. 7 kNm) of the total induced energy (cca. 50.00 kNm) is
dissipated via natural damping level of 5% of critical damping ratio.
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Fig. 10. Total energy balance

4.1. Modal distribution

Consistent with the objective of analysing modal distribution of the two energy
components, the energy amounts associated to natural fundamental vibration mode are
presented in Figure 11 against the total energy values.
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Fig. 10. Total vs normal mode 1 energy balance

Numerically, an amount of cca. 37.00 kNm of a total amount (cca. 50.00 kNm) is induced
by the natural fundamental mode of vibration. In percentage terms, it represents 74%,
while the remaining 26% is induced via the upper natural modes. These results of energy
modal distribution are consistent with the modal distribution of dynamic response in
lateral displacements. A detailed picture of modal distribution of both, induced and
dissipated energies in the first three natural modes of vibration are presented in Figure
11. Again, the lion share of fundamental natural mode is emphasized.

4.2. Inertial distribution

Associated inertial state of planar vibratory motion induced by wind action is expressed
by the lumped floor masses (Figure 7). Based on theoretical development expressed via
equations 23, 24, the following graphically presented results emphasize inertial
distributions of the two energy components: induced energy in Figure 11 and dissipated
energy in Figure 12.
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Fig. 11. Inertial distribution of induced energy
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Fig. 12. Inertial distribution of dissipated energy

It must be mentioned that the lumped masses along the height of the structure are,
practically equal. Therefore, the differentiating parameter in inertial distribution is
expected to be, mainly, the velocities of masses. Indeed, as it can be seen in Figure 11 and
Figure 12 the largest amounts of both, induced and dissipated energies are associated
with upper masses that vibrate with the highest velocities.

Referring to induced energy, mass m; takes no less than 15% of the total induced
amount. The same ratio of the dissipated energy via mass m; may be concluded.
Emphasizing the share of the first three mases, a total of 22.5 kNm (45%) of induced
energy is generated at the top three levels of the structure while, the dissipated ratio of
the same masses is 42 % of the total dissipated energy.

5. Conclusions

The contribution fulfils two main objectives associated to dynamic response of multi-
storey steel structures to dynamic wind action: an energy formulation of the dynamic
response in terms of induced energy and dissipated energy via intrinsic linear viscous
damping and the inertial and modal distributions of the energy state.

Traditional mechanical state of structural dynamic response is made up of the two
classical components: static (sectional and unit stresses) and kinematic (displacements
and deformations). Adding energy state to these components of the dynamic response,
an augmented mechanical state is obtained. The authors of the present contribution are
aware of the fact that the static and kinematic states are so popular that from students
up to highly qualified engineers, everybody knows the associated numerical values of
these parameters. It is, indeed, difficult to translate such a well-established fact into

600
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energy terms. Nevertheless, the energy state enjoys a few advantages in expressing the
dynamic response of a structure: it is a scalar quantity and, most important, it’s synthetic
nature includes the general and sectional geometry, the elastic state, the inertial state,
the damping state and the dynamic actions all expressed via stiffness, mass, damping and
forces matrices. Adding the energy state of the dynamic response to the traditional
mechanical state is the main contribution of the present work.
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