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Abstract: This study explores the Rubik’s Cube as a medium for investigating 
both human cognition and artificial intelligence. Through two experiments—
one involving novice human participants and the other employing a Deep Q-
Network (DQN) reinforcement learning agent—the research examines how 
different systems learn to solve complex problems. Human participants 
demonstrated improvement over time, highlighting adaptability, individual 
strategy development, and learning without formal guidance. In contrast, the 
DQN agent learned to solve the cube through trial-and-error interactions 
within a simulated environment, guided by reward feedback and policy 
refinement. While the AI model achieved high solving accuracy, it required 
extensive computational resources and lacked generalization beyond the 
specific task. The findings underscore key differences and potential 
complementarities between human and machine intelligence. This 
comparison offers insights into the strengths and limitations of both 
approaches, reinforcing the value of hybrid systems and continued cross-
disciplinary research in understanding intelligent behaviour. 
 
Key words: games, algorithm, problem solving, reinforcement learning, 
cognitive experiment, deep Q-network. 
 
 

1. Introduction 
 
Every person in the world has played games. This popularity can be attributed to games 

being intuitive and enjoyable. These unique aspects of games also ensure they are perfect 
for mind studies by being intuitive, meaning games offer a unique platform for observing 
inductive biases supporting behaviour in more ecological, naturalistic contexts than are 
possible within classical lab experiments. Being fun, games enable scientists to investigate 
new cognition questions like the nature of 'play' and intrinsic motivation, while enabling 
more extensive and more varied data collection through drawing in large numbers of 
participants. 

Since games are often constructed to challenge our skills and engage our passions, 
games were historically employed to analyse the mind [17], [12]. Game playing remains a 
favourite form of leisure entertainment among children and adults alike, spanning 
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cultures [22], [3] and throughout history [6]. Our capability to analyse cognition with 
games was vastly broadened in recent years by twin revolutions in massive online games 
(which generate huge quantities of data and can frequently be played over a phone) and 
powerful statistical modelling methods. 

Rubik's cube is a classic combinatorial puzzle with a vast state space having a unique 
goal state. In a sequence of randomly generated moves, it is unlikely to be reached [1]. A 
general intelligent agent would need to be able to learn to solve problems in large 
domains with little or no supervisory intervention from a human. Deep reinforcement 
learning with self-play has recently reached superhuman performance, without access to 
human data or domain expertise [16]. 

 

 
 

Fig. 1. Illustration of Rubik's Cube. 
 
Rubik's Cube is a 3D combination puzzle invented by Hungarian professor of 

architecture and sculptor Ernő Rubik in 1974 [11] and was originally known as the Magic 
Cube [5], [7]. The invention generated global interest due to its unique nature, whose 
impact on mankind was immense. Rubik's Cube was named one among the 100 most 
pivotal inventions in the 20th century [23]. It is also world's best-selling toy by general 
acclaim [13]. It secured a special German Game of the Year award [4] and achieved awards 
for best toy in the UK, France, and US [8]. The Rubik's Cube although became most popular 
in mains-steam from its peak in the 1980s, it remains widely known worldwide even 
today. It not just welcomes Rubik's Cube enthusiasts who are researching on Rubik's Cube 
reduction algorithms [19], [15], [21] but also welcomes scientists and technical 
professionals from different backgrounds with its advanced design and concepts [20].  

Rubik’s Cube structure possesses multiple properties like rotation, permutation and 
combinations, cycle and symmetry, which were considered physical models or 
instruments to examine certain scientific problems or were examined by applying 
scientific theory or methods in certain fields. Overall, Rubik’s Cube principles are 
embedded in multiple scientific systems related to permutations and combinations, 
symmetries, and cyclicality. Scholars, by contrast, have explored the inner motion 
principles of Rubik’s Cube structure. The uses of Rubik’s Cube are described in terms of its 
rotation properties [24]. 

Numerous people are now attempting to solve a cube using machine learning. OpenAI 
trained a single human-type robot hand, called Dactyl, to solve a Rubik's Cube. The 
learning was done entirely in simulation, and the policies learned were mapped directly 
to the physical robot without more training in the real world. The feat was possible by 
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using a new approach called Automatic Domain Randomization (ADR) that gradually 
increases simulation environment complexity and variability to improve the policies 
learned against real-world uncertainty [18]. 

While the system demonstrated impressive capabilities, it was not without limitations:  
• May Success Rate: the robot had a 60% rate of success in utilizing simpler scrambles 

involving 15 rotations and circa 20% for more complex ones involving 26 rotations 
[18].  

• Training Time: the training procedure was computationally demanding, comparable 
to a simulation equivalent to about 10,000 years [18].  

• Generalization: the model was trained specifically for the Rubik’s Cube problem, 
and its generalizability to other manipulation tasks is limited [18]. 

While the Rubik's Cube-solving robot demonstrates the impressive capabilities of AI in 
specific tasks, it remains a tool designed for narrow applications. The human brain's 
versatility, creativity, emotional depth, and efficiency continue to set it apart, 
underscoring the unique and unparalleled nature of human intelligence. Understanding 
the mind requires a paradigm shift away from only using highly controlled and simplified 
experiments and towards the rich landscape of studying cognition. 

 
2. The Rubic’s Cube 

 
Erno Rubik invented Rubik’s Cube in 1974. Within a month, he had devised the original 

algorithm to solve the cube. The Rubik’s Cube became popular all over the world after 
that, and numerous human-oriented methods for solving it have been found [9]. The 
methods are easy to memorize and instruct humans how to solve the cube in a step-by-
step, structured format. 

Evariste Galois came up with a new mathematics branch: group theory was born out of 
efforts towards finding the solvability of polynomial equations—the roots of the quadratic 
equation  𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0. There are analogous but more involved formulas for the 
cubic and the quartic polynomials found in the Middle Ages. Group theory was inspired 
by what was quite possibly the most important open mathematical question of the time: 
Does there exist a similar algebraic formula with radicals only in the coefficients for an 
equation of degree five or more? It was a problem that had been unsolved for centuries, 
despite attacks by the brightest and the best math brains. 

 

𝑥𝑥 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
  

 
However, since one sticker's position in a cubelet defines where the rest of the stickers 

in that cubelet are, we can potentially reduce the dimensionality of our representation by 
simply looking at where one sticker per cubelet is. We eliminate the redundant central 
cubelets and store only the 24 possible edge and corner cubelet locations. This gives us a 
20x24 state representation depicted in figure xx. The moves are represented by notation 
originally invented by David Singmaster: a move consists in a letter specifying in which 
face to perform a turn. F, B, L, R, U, D refer to turning front, back, left, right, up, down 
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faces, respectively. A single letter describes a clockwise rotation, while a letter preceded 
by an apostrophe describes a counterclockwise rotation. For instance: R and R’ would be 
turning the right face 90° clockwise and counterclockwise, respectively [16]. 

 
𝑣𝑣𝑥𝑥𝑖𝑖(𝑎𝑎) (1) 
 
𝑎𝑎 𝜖𝜖 {𝑈𝑈,𝑈𝑈′,𝐿𝐿,𝐹𝐹,𝐹𝐹′,⋯ } (2) 
 
𝐴𝐴(𝑥𝑥𝑥𝑥,𝑎𝑎) (3) 
 
𝑅𝑅(𝐴𝐴(𝑥𝑥𝑥𝑥,𝑎𝑎)) (4) 
 
𝑣𝑣𝑥𝑥𝑖𝑖(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑥𝑥𝑥𝑥,𝑎𝑎)) (5) 
 
𝑦𝑦𝑖𝑖 = max

𝑎𝑎
 (𝑣𝑣𝑥𝑥𝑖𝑖(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑥𝑥𝑥𝑥,𝑎𝑎))) for 𝑎𝑎 𝜖𝜖 {𝑈𝑈,𝑈𝑈′,⋯ ,𝐹𝐹,𝐹𝐹′} (6) 

 
𝑦𝑦𝑃𝑃𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎max

𝑎𝑎
 (𝑣𝑣𝑥𝑥𝑖𝑖(𝑎𝑎) + 𝑅𝑅(𝐴𝐴(𝑥𝑥𝑥𝑥, 𝑎𝑎))) for 𝑎𝑎 𝜖𝜖 {𝑈𝑈,𝑈𝑈′,⋯ ,𝐹𝐹,𝐹𝐹′} (7) 

 

 
 

Fig. 1. Rubik’s Cube from scramble to solution. 
 
The quantity of moves to solve any Rubik's cube state was a subject of long-standing 

speculation during more than 25 years — since Rubik's cube emerged. This value is also 
known as “God’s number”. An upper bound of 29 (using the face turn metric) was found 
in early 1990’s, after which we got another bound of 27 in 2006 [14]. 

Shorter solutions to Rubik's cube have been a fascination — for researchers in search 
techniques and enumeration methodologies, as well as by enthusiasts — across decades. 
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Rubik's cube is a famous challenge problem against which otherwise disparate methods 
can be compared for researchers. Singmaster and Frey [10] concluded their book Cubik 
Math in 1982 by conjecturing in it that "God's number" is in the low 20's. 

OpenAI taught a one-handed robotic setup, called Dactyl, to solve a Rubik's Cube in a 
study. The training took place entirely within simulation, and policies learned were 
efficiently mapped to the physical robot without further real-world training. This was 
achieved by using a new approach called ADR, where simulated complexity and variability 
are ratcheted up in a controlled fashion, making policies learned more resilient to real-
world uncertainties. 

The work [1] introduces DeepCubeA, a new algorithm that integrates search with deep 
reinforcement learning to solve combinatorial puzzles like the Rubik's Cube without any 
domain knowledge. DeepCubeA solves the Rubik's Cube at a rate of 100% with the 
shortest solution path found 60.3% of the time, while it achieves more than 96% optimal 
solution for puzzles like those involving the 15- and 24-puzzles. Unlike database-to-table 
methods based upon Pattern Databases (PDBs) requiring extensive memory and domain 
engineering, DeepCubeA acquires a cost-to-go function through approximate value 
iteration by learning from scrambled goal states. This learned function serves as a 
heuristic within a batch-weighted A* search, enabling puzzles to be solved by DeepCubeA 
more quickly, with fewer nodes expanded, and much less memory. It generalizes 
effectively to other realms like Lights Out and Sokoban and shows intelligent behaviour 
by learning about symmetric solutions and shared move structures like those found in 
group theory. These results show DeepCubeA to be a general-purpose, efficient solver for 
large state space planning problems. 

 
3. Experiment one 
 
3.1. Participants 

 
Three people were chosen for this experiment so that there would be diversity in terms 

of age group and gender. They were not experienced in solving the Rubik's Cube. They 
learned by themselves in their own method without any guidance on how to solve it. They 
learned in different ways and different methods. 

 
3.2. Procedure 

 
Each subject was given a regular 3x3 Rubik’s Cube. They were asked to try to solve the 

cube by themselves, and to determine how to seek out tutorials or directions that suit 
them. All subjects had three distinct solving trials after learning for 1 week. The time it 
took to solve the cube and how many moves it took them were taken for each trial.   

 
3.3. Procedure 

 
Each trial had the following data collected for it:  
• Solving time: Measured in minutes, seconds, and milliseconds. 
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• Number of moves: The total count of individual face rotations performed to reach 
the solved state. 

 
3.4. Results 

 
The performance of each participant across the three trials is summarized in Table 1 

and Figure 3.  
 

Table 1  
Individual Rubik’s Cube Solving Times and Move Counts Across Three Trials for 

Participants of Different Ages 
 

Participant Trial Age Time (min:s:ms) Moves 
P1  27   
 T1  2:39:32 140 
 T2  3:09:20 167 
 T3  2:28:57 113 

P2  65   
 T1  2:46:22 136 
 T2  2:46:51 147 
 T3  3:12:34 165 

P3  22   
 T1  6:56:60 226 
 T2  7:32:22 288 
 T3  5:02:71 192 

 

  

  
Fig. 3. Participant performance graph 
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4. Experiment two 
 
Reinforcement Learning (RL) is a branch of machine learning in which an agent learns 

to make decisions by interacting with an environment in order to achieve a specific goal. 
In this process, the agent, which serves as the decision-maker, operates within an 
environment—such as a Rubik's Cube in your code—and makes decisions based on the 
current state, which represents the cube’s configuration. The agent takes actions, such as 
rotating a face of the cube, and receives rewards from the environment depending on the 
outcome of these actions, with higher rewards typically given for configurations closer to 
the solved state. The agent follows a policy, which is the strategy it uses to select actions 
based on the state it observes. An episode in RL consists of a sequence of states, actions, 
and rewards, usually ending when the goal is achieved or after a set number of steps. The 
learning process involves the agent continuously observing the state, selecting actions 
(sometimes randomly, sometimes based on its learned strategy), and receiving feedback 
in the form of new states and rewards. Over time, the agent refines its policy to maximize 
the total reward.  In summary, reinforcement learning is fundamentally about learning by 
doing—using rewards and penalties to discover the best path toward achieving a goal. 

In our code developed to solve the cube, the agent attempts to solve the Rubik's Cube 
by learning which sequences of moves lead to more solved configurations. It improves its 
strategy through repeated trial and error, gradually learning which actions are most 
effective. 

 
4.1. The DQN Algorithm 

 
This is a Deep Q-Network (DQN) reinforcement learning agent that tries to solve a 

Rubik’s Cube. The agent learns by interacting with the cube, receiving rewards for making 
progress, and updating its neural network to improve over time. 

 
4.1.1. Code Components 

a. Cube Environment 
• The Cube class (from rubiks.py) represents the Rubik’s Cube.   
• The agent can scramble, rotate, and check the state of the cube. 
b. DQN Agent 
• The agent uses a neural network (DQN class) to estimate the value (Q-value) of each 

possible move in a given cube state. 
• It chooses actions using an epsilon-greedy strategy: sometimes random (explore), 

sometimes the best known (exploit). 
c. Replay Memory 
• Stores past experiences (state, action, next state, reward) so the agent can learn 

from them later, not just immediately. 
d. Training Loop 
• The agent repeatedly scrambles a cube, tries to solve it, and learns from its actions. 
• Progress and stats are printed and visualized. 
 

vscode-file://vscode-app/c:/Users/24999/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
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4.1.2. Key Parameters 
The key parameters shown in Figure 4: 
• edge_length = 2: The size of the cube (2x2 by default). 
• num_layers = 3: Number of layers in the neural network. 
• BATCH_SIZE = 4096: How many experiences are used in each training step. 
• GAMMA = 0.95: Discount factor for future rewards (how much the agent cares 

about future vs. immediate reward). 
• EPS_START = 0.975: Initial probability of choosing a random action (exploration). 
• EPS_END = 0.03: Minimum probability of random action (after lots of training). 
• EPS_DECAY = 1000000: How quickly the randomness decays. 
• TRANSITION_MEMORY_SIZE = 15000: How many experiences to store in replay 

memory. 
• term_iter = 600000: How many moves before forcibly resetting the cube. 
• max_attempt_iterations = 100000: Max moves per attempt before giving up and 

starting over. 
 

 
Fig. 2. Key parameters of the algorithm.  

 
4.1.3. How the Code Works  

a. Initialization 
• Sets up the neural network, optimizer, and replay memory. 
• Loads a saved model if available. 
b. Main Loop 
• For up to 1000 attempts: 
 Scramble a new cube (see Figure 5). 
 Try to solve it, up to max_attempt_iterations moves. 

• For each move: 
 Choose an action (random or best known, depending on epsilon). 
 Rotate the cube. 
 Calculate reward (based on how close to solved). 
 Store the experience in memory. 
 Occasionally train the neural network using a batch of past experiences. 
 Print stats and update the visualization. 
 If solved, print "Solved!" and stats, then start a new attempt. 
 If too many moves, reset and start over. 
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Fig. 3. Unsolved cube state. 

 
c. Training 
• The neural network is trained to predict the best move for any given cube state, 

using the experiences stored in replay memory (see Figure 6). 
d. Visualization 
• The cube’s state is shown in a persistent matplotlib window, updating after every 

move. 
e. Saving/Loading 
• The model’s weights are saved to model.pth after training, and loaded at the start 

if available. 
 

 
Fig. 4. Training procedure. 

 

vscode-file://vscode-app/c:/Users/24999/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html
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4.1.4. What Do the Stats Mean?  
• Correct: Number of correctly coloured squares (current, running average, max 

seen). 
• Reward: The reward for the current state (current, running average, max seen). 
• Randomness (eps_threshold): % chance the agent picks a random move 

(exploration). 
• Total Iterations: Total moves made by the agent. 
• Batch Size: Number of experiences used per training step. 
• Gamma: Discount factor for future rewards. 
• DQN Loss: How well the neural network is learning (lower is better). 
• Current Iter: Moves in the current attempt. 
• Current Time: Time spent on the current attempt. 
 

4.1.5. DQN Learning  
The Big Picture: Reinforcement Learning (RL):  
• The agent interacts with an environment (the cube). 
• At each step, it observes the state, takes an action, receives a reward, and observes 

the new state. 
• The goal: learn a policy (a way to choose actions) that maximizes total reward—i.e., 

solves the cube efficiently (see Figure 7). 
 

 
Fig. 5. Solved cube state. 

The DQN (Deep Q-Network) Approach:  
• The agent uses a neural network to estimate the "Q-value" for each possible action 

in a given state. 
• The Q-value is an estimate of the total future reward the agent can expect if it takes 

that action from that state and acts optimally thereafter.  
The Learning Cycle  
a. State Representation 
• The cube’s current configuration is encoded as a tensor (vector of numbers) that 

the neural network can process. 
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b. Action Selection (Epsilon-Greedy) 
• With probability ε (epsilon, "Randomness"), the agent picks a random action 

(exploration). 
• With probability 1-ε, it picks the action with the highest Q-value according to its 

neural network (exploitation). 
• Epsilon starts high (lots of exploration) and decays over time (more exploitation as 

the agent learns). 
c. Taking an Action 
• The agent rotates a face of the cube (or makes a random move). 
• The cube’s state changes. 
d. Reward Calculation 
• The agent receives a reward based on how “solved” the cube is after the move. 
• More correct squares = higher reward. Solving the cube gives the highest reward. 
e. Storing the Experience 
• The agent saves the experience (state, action, next state, reward) in a replay 

memory buffer. 
• This allows the agent to learn from past experiences, not just the most recent one. 
f. Training the Neural Network 
• Periodically, the agent samples a batch of experiences from replay memory. 
• For each experience, it computes: 
 The Q-value for the action it took in the original state (using the current 

network). 
 The “target” Q-value: reward + γ * max Q-value of the next state (using the 

current network). 
• The network is trained to minimize the difference (loss) between its predicted Q-

value and the target Q-value (using Huber loss). 
• This is done via backpropagation and gradient descent. 
g. Updating Epsilon 
• After each step, epsilon decays a little, so the agent explores less and exploits more 

as it learns. 
By repeatedly experiencing the environment, the agent learns which actions lead to 

higher rewards (i.e., getting closer to solving the cube), The neural network generalizes 
from past experiences to new, unseen cube states. Over time, the agent’s policy improves, 
and it becomes more likely to solve the cube. 
 
4.1.6. Key Points 

• Exploration is crucial early on so the agent doesn’t get stuck in bad habits. 
• Replay memory breaks correlations between consecutive experiences, making 

learning more stable. 
• Batch training allows the agent to learn from many experiences at once, improving 

efficiency. 
• Discount factor (gamma) controls how much the agent values future rewards vs. 

immediate ones. 
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4.1.7. "Learning" Process 
• At first, the agent acts randomly and gets low rewards. 
• As it trains, the neural network’s Q-value predictions improve. 
• The agent starts to make better moves, gets higher rewards, and eventually solves 

the cube (see Figure 8). 
• The randomness (epsilon) decreases, and the agent relies more on its learned 

policy. 
 

 
Fig. 6. Successful algorithm attempt statistics 

 
4.1.8 Outcome 

• At the beginning, the agent will not solve the cube and will make mostly random 
moves. 

• As training progresses, "Max Correct" and "Max Reward" should increase. 
• Eventually, it will solve the cube as the agent learns and repeats. 
 

5. Discussion 
5.1. Experiment one 

 
These findings reveal substantial variability in both solving time and moves made by 

participants and across trials. The younger participants didn’t tend to solve the cube more 
quickly and in fewer moves, hinting at a possible age factor that is non-influencing 
problem-solving speed and efficiency. All participants did improve from one trial to 
another, however, indicating learning by practice and development of customized 
strategies. 
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Figure 9 illustrates the correlation between solving time and moves in all trials. In 
general, longer solving times were associated with more moves, particularly in 
subsequent trials. The initial trials had average times and moves, likely due to participants’ 
initial probing. Some participants had increases in both time and moves, potentially due 
to difficulty or less effective strategies, while others improved by minimizing one or both. 
Strikingly, more moves did not necessarily imply longer times, indicating participants 
moved efficiently despite less effective strategies, yet others took longer yet made fewer 
moves. The diversity of problem-solving strategies and learning's dynamic nature in 
solving the Rubik's Cube are stressed by the scatter plot, making it crucial to use 
quantitative and qualitative analysis to grasp these processes. 

This experiment demonstrates problem-solving diversity in humans and learning even 
without training. Future research can include a broader participant population or 
compare human strategies to strategies by AI-based solvers. 

 

 
Fig. 7. Scatter plot showing Time vs. Moves Across Trials. 

 
5.2. Experiment two 

 
• The RL agent operates within a simulated Rubik’s Cube environment, where the 

state represents the current configuration of the cube. 
• The agent selects actions (rotations of cube faces) based on its current policy, which 

is refined over time through learning. 
• Rewards are assigned based on progress toward the solved state: moves that bring 

the cube closer to completion yield higher rewards, while moves that do not 
contribute to solving the cube result in lower or negative rewards. 

• The agent’s policy is updated using experiences stored in replay memory, allowing 
it to learn from both recent and past actions 
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5.2.1. Implementation Details 
• The code is built around a DQN agent, which uses a neural network to estimate the 

value (Q-value) of possible moves (see Figure 10) in each state.  
• The agent employs an epsilon-greedy strategy (see Figure 11) to balance 

exploration (random moves) and exploitation (best-known moves).  
 

 
Fig. 8. Rotation per solution.  

 
Fig. 9. Epsilon per solution. 

5.2.2. Procedure 
• Each training episode begins with a scrambled cube. 
• The agent attempts to solve the cube within a set number of moves. 
• After each move, the agent: 
 Observes the new state 
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 Receives a reward 
 Stores the experience in replay memory 
 Periodically samples batches from memory to train the neural network 

• The agent’s performance is tracked via metrics such as the number of correctly 
colored squares, rewards, randomness (exploration rate), and DQN loss (see Figures 
12 and 13). 

 

 
Fig. 10. Rewards per solving attempt. 

 
Fig. 11. DQN loss status per attempt. 

 
5.2.3. Results and Visualization 
• The agent’s progress is visualized in real-time, showing the cube’s state and learning 

metrics. 
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• Over time, the agent improves its ability to solve the cube, requiring fewer moves 
and achieving higher rewards as its policy becomes more effective. 

• The model’s weights are saved for future use, allowing continued training or 
evaluation 

This experiment demonstrates the effectiveness of reinforcement learning, specifically 
DQN, in solving complex combinatorial puzzles like the Rubik’s Cube. The agent learns 
optimal strategies through trial and error, refining its approach to maximize rewards and 
efficiently reach the solved state. 

 
5. Conclusion 

 
The Rubik’s Cube, aside from being a best-selling puzzle, itself acts as a viable vehicle 

for investigating artificial intelligence and human thinking. With its staggering quantity of 
possible arrangements, the cube provides a perfect environment for problem-solving 
techniques, learning mechanisms, and search heuristics to be explored. Since its discovery 
by Ernő Rubik in 1974, the cube has continued to challenge and motivate experts from 
every walk of life. 

Here, we observed how novice participants solved the Rubik’s Cube without prior 
experience. The findings showed varying strategies and learning curvatures across 
participants. All three became better with each passing day, yet their distinct journey to 
arriving at the solution indicates flexibility and creativity in problem-solving by humans. 
This concurs with the view that puzzles like the Rubik’s Cube provide insightful 
information about processes like pattern detection, memory, and decision-making—
processes in which humans are superior even without any training. 

At the same time, new developments in artificial intelligence exhibit impressive 
performance in solving the Rubik's Cube through means like DeepCubeA, where deep 
reinforcement learning in collaboration with search methods are applied to identify 
optimal moves without any knowledge from humans. Robotic platforms like Dactyl are 
able to exhibit how complex manipulation problems can be trained entirely with 
simulation and translated to real-world setup through means like ADR. These systems are 
nonetheless limited when it comes to generalization, success rate, and computational 
efficiency, showing the disparity between machine and human intelligence. 

This study explored the Rubik’s Cube as a platform for investigating both human and 
artificial problem-solving strategies. Through two distinct experiments, we examined the 
learning processes of human participants and a reinforcement learning agent. In the first 
experiment, human participants with no prior experience were able to learn and improve 
their Rubik’s Cube solving abilities within a short period, demonstrating the adaptability 
and creativity inherent in human cognition. Their progress highlighted the role of self-
guided exploration and diverse learning strategies in mastering complex tasks. 

The second experiment implemented a Deep Q-Network (DQN) agent to autonomously 
learn to solve the Rubik’s Cube. The agent’s performance, as measured by metrics such 
as exploration rate, DQN loss, number of rotations, and average reward, showed 
substantial improvement over time. These results demonstrate the effectiveness of 
reinforcement learning in navigating large, combinatorial state spaces and developing 
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efficient solution strategies without explicit human instruction. 
Together, these findings underscore the Rubik’s Cube’s value as a benchmark for both 

cognitive and computational research. While artificial agents can achieve high efficiency 
and consistency through iterative learning, human solvers continue to exhibit flexibility 
and ingenuity that remain challenging for current AI systems to fully replicate. Future 
work may extend these approaches to more complex puzzles or hybrid human-AI 
collaborative frameworks, further advancing our understanding of learning and problem-
solving in both natural and artificial systems. 

For further investigation: 
1. Expand Participant Diversity and Sample Size: Conduct experiments with a larger 

and more diverse group of participants to better understand how factors such as age, 
gender, cognitive style, and prior puzzle experience influence Rubik’s Cube problem-
solving strategies and learning curves. 

2. Integrate Behavioural and Neurocognitive Analysis: Incorporate tools like eye-
tracking, EEG, or fMRI to study the cognitive processes underlying human problem-solving 
during Rubik’s Cube tasks, providing deeper insights into attention, memory, and 
decision-making mechanisms. 

 
Abbreviation Term 

RL Reinforcement Learning 
DQN Deep Q-Network 
ADR Automatic Domain Randomization 
AI Artificial Intelligence 
PDB Pattern Database 
ADR Automatic Domain Randomization 
PDBs Pattern Databases 
𝑥𝑥𝑖𝑖 Current state of the Rubik’s Cube 
𝑎𝑎: U, U′, L, F, F′, U, U′, L, F, F′ move applied to the cube 

𝑣𝑣𝑥𝑥𝑖𝑖 Estimated value of taking action aa in state 𝑥𝑥𝑖𝑖 

𝐴𝐴(𝑥𝑥𝑥𝑥,𝑎𝑎) The new cube state after applying action 𝑎𝑎 to state 𝑥𝑥𝑖𝑖. 
𝑅𝑅(𝐴𝐴(𝑥𝑥𝑥𝑥, 𝑎𝑎)) Reaching the new state 

𝑦𝑦𝑖𝑖 
Maximum value achievable from the state 𝑥𝑥𝑖𝑖 by choosing 
the best action 

𝑦𝑦𝑃𝑃𝑃𝑃 
The action x that achieves the maximum value 𝑦𝑦𝑖𝑖 (optimal 
action). 
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