Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024
Series I: Engineering Sciences
https://doi.org/10.31926/but.ens.2024.17.66.2.1

DEEP REINFORCEMENT LEARNING:
INSIGHTS FROM THE RUBIK’S CUBE

MOUTAMAN M. ABBAS *

Abstract: This study explores the Rubik’s Cube as a medium for investigating
both human cognition and artificial intelligence. Through two experiments—
one involving novice human participants and the other employing a Deep Q-
Network (DQN) reinforcement learning agent—the research examines how
different systems learn to solve complex problems. Human participants
demonstrated improvement over time, highlighting adaptability, individual
strategy development, and learning without formal guidance. In contrast, the
DQN agent learned to solve the cube through trial-and-error interactions
within a simulated environment, guided by reward feedback and policy
refinement. While the Al model achieved high solving accuracy, it required
extensive computational resources and lacked generalization beyond the
specific task. The findings underscore key differences and potential
complementarities between human and machine intelligence. This
comparison offers insights into the strengths and limitations of both
approaches, reinforcing the value of hybrid systems and continued cross-
disciplinary research in understanding intelligent behaviour.

Key words: games, algorithm, problem solving, reinforcement learning,
cognitive experiment, deep Q-network.

1. Introduction

Every person in the world has played games. This popularity can be attributed to games
being intuitive and enjoyable. These unique aspects of games also ensure they are perfect
for mind studies by being intuitive, meaning games offer a unique platform for observing
inductive biases supporting behaviour in more ecological, naturalistic contexts than are
possible within classical lab experiments. Being fun, games enable scientists to investigate
new cognition questions like the nature of 'play' and intrinsic motivation, while enabling
more extensive and more varied data collection through drawing in large numbers of
participants.

Since games are often constructed to challenge our skills and engage our passions,
games were historically employed to analyse the mind [17], [12]. Game playing remains a
favourite form of leisure entertainment among children and adults alike, spanning

1 Faculty of Civil Engineering, Transilvania University of Brasov.

2 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

cultures [22], [3] and throughout history [6]. Our capability to analyse cognition with
games was vastly broadened in recent years by twin revolutions in massive online games
(which generate huge quantities of data and can frequently be played over a phone) and
powerful statistical modelling methods.

Rubik's cube is a classic combinatorial puzzle with a vast state space having a unique
goal state. In a sequence of randomly generated moves, it is unlikely to be reached [1]. A
general intelligent agent would need to be able to learn to solve problems in large
domains with little or no supervisory intervention from a human. Deep reinforcement
learning with self-play has recently reached superhuman performance, without access to
human data or domain expertise [16].

Fig. 1. lllustration of Rubik's Cube.

Rubik's Cube is a 3D combination puzzle invented by Hungarian professor of
architecture and sculptor Erné Rubik in 1974 [11] and was originally known as the Magic
Cube [5], [7]. The invention generated global interest due to its unique nature, whose
impact on mankind was immense. Rubik's Cube was named one among the 100 most
pivotal inventions in the 20th century [23]. It is also world's best-selling toy by general
acclaim [13]. It secured a special German Game of the Year award [4] and achieved awards
for best toy in the UK, France, and US [8]. The Rubik's Cube although became most popular
in mains-steam from its peak in the 1980s, it remains widely known worldwide even
today. It not just welcomes Rubik's Cube enthusiasts who are researching on Rubik's Cube
reduction algorithms [19], [15], [21] but also welcomes scientists and technical
professionals from different backgrounds with its advanced design and concepts [20].

Rubik’s Cube structure possesses multiple properties like rotation, permutation and
combinations, cycle and symmetry, which were considered physical models or
instruments to examine certain scientific problems or were examined by applying
scientific theory or methods in certain fields. Overall, Rubik’s Cube principles are
embedded in multiple scientific systems related to permutations and combinations,
symmetries, and cyclicality. Scholars, by contrast, have explored the inner motion
principles of Rubik’s Cube structure. The uses of Rubik’s Cube are described in terms of its
rotation properties [24].

Numerous people are now attempting to solve a cube using machine learning. OpenAl
trained a single human-type robot hand, called Dactyl, to solve a Rubik's Cube. The
learning was done entirely in simulation, and the policies learned were mapped directly
to the physical robot without more training in the real world. The feat was possible by

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 3

using a new approach called Automatic Domain Randomization (ADR) that gradually
increases simulation environment complexity and variability to improve the policies
learned against real-world uncertainty [18].
While the system demonstrated impressive capabilities, it was not without limitations:
e May Success Rate: the robot had a 60% rate of success in utilizing simpler scrambles
involving 15 rotations and circa 20% for more complex ones involving 26 rotations
[18].
¢ Training Time: the training procedure was computationally demanding, comparable
to a simulation equivalent to about 10,000 years [18].
¢ Generalization: the model was trained specifically for the Rubik’s Cube problem,
and its generalizability to other manipulation tasks is limited [18].

While the Rubik's Cube-solving robot demonstrates the impressive capabilities of Al in
specific tasks, it remains a tool designed for narrow applications. The human brain's
versatility, creativity, emotional depth, and efficiency continue to set it apart,
underscoring the unique and unparalleled nature of human intelligence. Understanding
the mind requires a paradigm shift away from only using highly controlled and simplified
experiments and towards the rich landscape of studying cognition.

2. The Rubic’s Cube

Erno Rubik invented Rubik’s Cube in 1974. Within a month, he had devised the original
algorithm to solve the cube. The Rubik’s Cube became popular all over the world after
that, and numerous human-oriented methods for solving it have been found [9]. The
methods are easy to memorize and instruct humans how to solve the cube in a step-by-
step, structured format.

Evariste Galois came up with a new mathematics branch: group theory was born out of
efforts towards finding the solvability of polynomial equations—the roots of the quadratic
equation ax? + bx + ¢ = 0. There are analogous but more involved formulas for the
cubic and the quartic polynomials found in the Middle Ages. Group theory was inspired
by what was quite possibly the most important open mathematical question of the time:
Does there exist a similar algebraic formula with radicals only in the coefficients for an
equation of degree five or more? It was a problem that had been unsolved for centuries,
despite attacks by the brightest and the best math brains.

—b +Vb? — 4ac
X =
2a

However, since one sticker's position in a cubelet defines where the rest of the stickers
in that cubelet are, we can potentially reduce the dimensionality of our representation by
simply looking at where one sticker per cubelet is. We eliminate the redundant central
cubelets and store only the 24 possible edge and corner cubelet locations. This gives us a
20x24 state representation depicted in figure xx. The moves are represented by notation
originally invented by David Singmaster: a move consists in a letter specifying in which
face to perform a turn. F, B, L, R, U, D refer to turning front, back, left, right, up, down

4 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

faces, respectively. A single letter describes a clockwise rotation, while a letter preceded
by an apostrophe describes a counterclockwise rotation. For instance: R and R’ would be
turning the right face 90° clockwise and counterclockwise, respectively [16].

vy, (@) (1)
ae{U,U,LFF, -} (2)
A(xi, a) (3)
R(A(xi,a)) (4)
V(@) + R(A(xi, @) (5)
yi = max (vy,(a) + R(A(xi,a))) fora e {U, V', -, F,F"} (6)
ypi = argmax (vy,(a) + R(A(xi, a))) for a e {U,U’, -, F,F'} (7)

Fig. 1. Rubik’s Cube from scramble to solution.

The quantity of moves to solve any Rubik's cube state was a subject of long-standing
speculation during more than 25 years — since Rubik's cube emerged. This value is also
known as “God’s number”. An upper bound of 29 (using the face turn metric) was found
in early 1990’s, after which we got another bound of 27 in 2006 [14].

Shorter solutions to Rubik's cube have been a fascination — for researchers in search
techniques and enumeration methodologies, as well as by enthusiasts — across decades.

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 5

Rubik's cube is a famous challenge problem against which otherwise disparate methods
can be compared for researchers. Singmaster and Frey [10] concluded their book Cubik
Math in 1982 by conjecturing in it that "God's number" is in the low 20's.

OpenAl taught a one-handed robotic setup, called Dactyl, to solve a Rubik's Cube in a
study. The training took place entirely within simulation, and policies learned were
efficiently mapped to the physical robot without further real-world training. This was
achieved by using a new approach called ADR, where simulated complexity and variability
are ratcheted up in a controlled fashion, making policies learned more resilient to real-
world uncertainties.

The work [1] introduces DeepCubeA, a new algorithm that integrates search with deep
reinforcement learning to solve combinatorial puzzles like the Rubik's Cube without any
domain knowledge. DeepCubeA solves the Rubik's Cube at a rate of 100% with the
shortest solution path found 60.3% of the time, while it achieves more than 96% optimal
solution for puzzles like those involving the 15- and 24-puzzles. Unlike database-to-table
methods based upon Pattern Databases (PDBs) requiring extensive memory and domain
engineering, DeepCubeA acquires a cost-to-go function through approximate value
iteration by learning from scrambled goal states. This learned function serves as a
heuristic within a batch-weighted A* search, enabling puzzles to be solved by DeepCubeA
more quickly, with fewer nodes expanded, and much less memory. It generalizes
effectively to other realms like Lights Out and Sokoban and shows intelligent behaviour
by learning about symmetric solutions and shared move structures like those found in
group theory. These results show DeepCubeA to be a general-purpose, efficient solver for
large state space planning problems.

3. Experiment one
3.1. Participants

Three people were chosen for this experiment so that there would be diversity in terms
of age group and gender. They were not experienced in solving the Rubik's Cube. They
learned by themselves in their own method without any guidance on how to solve it. They
learned in different ways and different methods.
3.2. Procedure

Each subject was given a regular 3x3 Rubik’s Cube. They were asked to try to solve the
cube by themselves, and to determine how to seek out tutorials or directions that suit
them. All subjects had three distinct solving trials after learning for 1 week. The time it
took to solve the cube and how many moves it took them were taken for each trial.

3.3. Procedure

Each trial had the following data collected for it:
¢ Solving time: Measured in minutes, seconds, and milliseconds.

6 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

¢ Number of moves: The total count of individual face rotations performed to reach
the solved state.

3.4. Results

The performance of each participant across the three trials is summarized in Table 1
and Figure 3.

Table 1
Individual Rubik’s Cube Solving Times and Move Counts Across Three Trials for
Participants of Different Ages

Participant Trial Age Time (min:s:ms) Moves
P1 27
T1 2:39:32 140
T2 3:09:20 167
T3 2:28:57 113
P2 65
T1 2:46:22 136
T2 2:46:51 147
T3 3:12:34 165
P3 22
T1 6:56:60 226
T2 7:32:22 288
T3 5:02:71 192
Sum of Moves by Sum of Moves by Trial
Participant 300
1000 600
400
500
TN
0 0
Pl P2 P3 Tl T2 T3
Sum of Time (sec) by Trial Sum of Time (sec) by
1000 Participant
500
500
0 , 00
T1 T2 T3 1 2 3

Fig. 3. Participant performance graph

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 7

4. Experiment two

Reinforcement Learning (RL) is a branch of machine learning in which an agent learns
to make decisions by interacting with an environment in order to achieve a specific goal.
In this process, the agent, which serves as the decision-maker, operates within an
environment—such as a Rubik's Cube in your code—and makes decisions based on the
current state, which represents the cube’s configuration. The agent takes actions, such as
rotating a face of the cube, and receives rewards from the environment depending on the
outcome of these actions, with higher rewards typically given for configurations closer to
the solved state. The agent follows a policy, which is the strategy it uses to select actions
based on the state it observes. An episode in RL consists of a sequence of states, actions,
and rewards, usually ending when the goal is achieved or after a set number of steps. The
learning process involves the agent continuously observing the state, selecting actions
(sometimes randomly, sometimes based on its learned strategy), and receiving feedback
in the form of new states and rewards. Over time, the agent refines its policy to maximize
the total reward. In summary, reinforcement learning is fundamentally about learning by
doing—using rewards and penalties to discover the best path toward achieving a goal.

In our code developed to solve the cube, the agent attempts to solve the Rubik's Cube
by learning which sequences of moves lead to more solved configurations. It improves its
strategy through repeated trial and error, gradually learning which actions are most
effective.

4.1. The DQN Algorithm

This is a Deep Q-Network (DQN) reinforcement learning agent that tries to solve a
Rubik’s Cube. The agent learns by interacting with the cube, receiving rewards for making
progress, and updating its neural network to improve over time.

4.1.1. Code Components
a. Cube Environment
¢ The Cube class (from rubiks.py) represents the Rubik’s Cube.
e The agent can scramble, rotate, and check the state of the cube.
b. DQN Agent
The agent uses a neural network (DQN class) to estimate the value (Q-value) of each
possible move in a given cube state.
It chooses actions using an epsilon-greedy strategy: sometimes random (explore),
sometimes the best known (exploit).
c. Replay Memory
e Stores past experiences (state, action, next state, reward) so the agent can learn
from them later, not just immediately.
d. Training Loop
¢ The agent repeatedly scrambles a cube, tries to solve it, and learns from its actions.
¢ Progress and stats are printed and visualized.

vscode-file://vscode-app/c:/Users/24999/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

4.1.2. Key Parameters
The key parameters shown in Figure 4:

edge_length = 2: The size of the cube (2x2 by default).

num_layers = 3: Number of layers in the neural network.

BATCH_SIZE = 4096: How many experiences are used in each training step.
GAMMA = 0.95: Discount factor for future rewards (how much the agent cares
about future vs. immediate reward).

EPS_START = 0.975: Initial probability of choosing a random action (exploration).
EPS_END = 0.03: Minimum probability of random action (after lots of training).
EPS_DECAY = 1000000: How quickly the randomness decays.
TRANSITION_MEMORY_SIZE = 15000: How many experiences to store in replay
memory.

term_iter = 600000: How many moves before forcibly resetting the cube.
max_attempt_iterations = 100000: Max moves per attempt before giving up and
starting over.

Correct: (Current: @, Running:
Reward: (Current: 1, Running:
Randomness (eps threshold): 27.3&%
Total Tterations:

Batch Size: 4896

Gamma: &.95

DON Loss: 6

Current Ite

Current Time: 119 seconds

Fig. 2. Key parameters of the algorithm.

4.1.3. How the Code Works
a. Initialization

Sets up the neural network, optimizer, and replay memory.
Loads a saved model if available.

b. Main Loop

For up to 1000 attempts:

= Scramble a new cube (see Figure 5).

= Try to solve it, up to max_attempt_iterations moves.

For each move:

= Choose an action (random or best known, depending on epsilon).
= Rotate the cube.

= Calculate reward (based on how close to solved).

= Store the experience in memory.

= QOccasionally train the neural network using a batch of past experiences.
= Print stats and update the visualization.

= |f solved, print "Solved!" and stats, then start a new attempt.

= |f too many moves, reset and start over.

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 9

Fig. 3. Unsolved cube state.

c. Training

¢ The neural network is trained to predict the best move for any given cube state,
using the experiences stored in replay memory (see Figure 6).

d. Visualization

e The cube’s state is shown in a persistent matplotlib window, updating after every
move.

e. Saving/Loading

¢ The model’s weights are saved to model.pth after training, and loaded at the start
if available.

Solved!

Solved statistics:
Cube @ (Attempt 1): Rotations: 55093, Time: 169, Seed: 543435615

Attempt 1 (seed: 15)
Best cube (24 cor squares):

Saved training state to train state.pkl
Starting solution_ attempt

Fig. 4. Training procedure.

vscode-file://vscode-app/c:/Users/24999/AppData/Local/Programs/Microsoft%20VS%20Code/resources/app/out/vs/code/electron-sandbox/workbench/workbench.html

10 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

4.1.4. What Do the Stats Mean?

e Correct: Number of correctly coloured squares (current, running average, max
seen).

e Reward: The reward for the current state (current, running average, max seen).

e Randomness (eps_threshold): % chance the agent picks a random move
(exploration).

¢ Total Iterations: Total moves made by the agent.

e Batch Size: Number of experiences used per training step.

e Gamma: Discount factor for future rewards.

¢ DQN Loss: How well the neural network is learning (lower is better).

e Current Iter: Moves in the current attempt.

e Current Time: Time spent on the current attempt.

4.1.5. DQN Learning
The Big Picture: Reinforcement Learning (RL):
¢ The agent interacts with an environment (the cube).
¢ At each step, it observes the state, takes an action, receives a reward, and observes
the new state.
¢ The goal: learn a policy (a way to choose actions) that maximizes total reward—i.e.,
solves the cube efficiently (see Figure 7).

Fig. 5. Solved cube state.

The DQN (Deep Q-Network) Approach:

¢ The agent uses a neural network to estimate the "Q-value" for each possible action
in a given state.

¢ The Q-value is an estimate of the total future reward the agent can expect if it takes
that action from that state and acts optimally thereafter.

The Learning Cycle

a. State Representation

e The cube’s current configuration is encoded as a tensor (vector of numbers) that
the neural network can process.

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 11

b. Action Selection (Epsilon-Greedy)
e With probability € (epsilon, "Randomness"), the agent picks a random action
(exploration).

e With probability 1-¢, it picks the action with the highest Q-value according to its

neural network (exploitation).

¢ Epsilon starts high (lots of exploration) and decays over time (more exploitation as

the agent learns).

¢. Taking an Action

¢ The agent rotates a face of the cube (or makes a random move).

¢ The cube’s state changes.

d. Reward Calculation

¢ The agent receives a reward based on how “solved” the cube is after the move.

¢ More correct squares = higher reward. Solving the cube gives the highest reward.

e. Storing the Experience

e The agent saves the experience (state, action, next state, reward) in a replay

memory buffer.

¢ This allows the agent to learn from past experiences, not just the most recent one.

f. Training the Neural Network

e Periodically, the agent samples a batch of experiences from replay memory.

e For each experience, it computes:

= The Q-value for the action it took in the original state (using the current
network).

= The “target” Q-value: reward + y * max Q-value of the next state (using the
current network).

e The network is trained to minimize the difference (loss) between its predicted Q-

value and the target Q-value (using Huber loss).

¢ This is done via backpropagation and gradient descent.

g. Updating Epsilon

e After each step, epsilon decays a little, so the agent explores less and exploits more

as it learns.

By repeatedly experiencing the environment, the agent learns which actions lead to
higher rewards (i.e., getting closer to solving the cube), The neural network generalizes
from past experiences to new, unseen cube states. Over time, the agent’s policy improves,
and it becomes more likely to solve the cube.

4.1.6. Key Points

e Exploration is crucial early on so the agent doesn’t get stuck in bad habits.

e Replay memory breaks correlations between consecutive experiences, making
learning more stable.

¢ Batch training allows the agent to learn from many experiences at once, improving
efficiency.

¢ Discount factor (gamma) controls how much the agent values future rewards vs.
immediate ones.

12 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

4.1.7. "Learning" Process

o At first, the agent acts randomly and gets low rewards.

¢ As it trains, the neural network’s Q-value predictions improve.

¢ The agent starts to make better moves, gets higher rewards, and eventually solves
the cube (see Figure 8).

¢ The randomness (epsilon) decreases, and the agent relies more on its learned

policy.

Solved statistics:

Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube
Cube

4.1.8 Outcome

e At the beginning, the agent will not solve the cube and will make mostly random

moves.

¢ As training progresses, "Max Correct" and "Max Reward" should increase.
¢ Eventually, it will solve the cube as the agent learns and repeats.

5. Discussion

8 (Attempt
1 (Attempt

(Attempt
18 (Attempt

Fig. 6. Successful algorithm attempt statistics

5.1. Experiment one

These findings reveal substantial variability in both solving time and moves made by
participants and across trials. The younger participants didn’t tend to solve the cube more
quickly and in fewer moves, hinting at a possible age factor that is non-influencing
problem-solving speed and efficiency. All participants did improve from one trial to
another, however, indicating learning by practice and development of customized

strategies.

): Rotations:
): Rotations:
Rotations:
: Rotations:
9): Rotations:
): Rotations:
: Rotations:
Rotations:
): Rotations:
): Rotations:
Rotations:
Rotations:
Rotations:
Rotations:
: Rotations:
: Rotations:
Rotations:
: Rotations:
Rotations:
Rotations:
Rotations:
Rotations:
: Rotations:
Rotations:
): Rotations:
): Rotations:

Time:

, Time:

Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:
Time:

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 13

Figure 9 illustrates the correlation between solving time and moves in all trials. In
general, longer solving times were associated with more moves, particularly in
subsequent trials. The initial trials had average times and moves, likely due to participants’
initial probing. Some participants had increases in both time and moves, potentially due
to difficulty or less effective strategies, while others improved by minimizing one or both.
Strikingly, more moves did not necessarily imply longer times, indicating participants
moved efficiently despite less effective strategies, yet others took longer yet made fewer
moves. The diversity of problem-solving strategies and learning's dynamic nature in
solving the Rubik's Cube are stressed by the scatter plot, making it crucial to use
guantitative and qualitative analysis to grasp these processes.

This experiment demonstrates problem-solving diversity in humans and learning even
without training. Future research can include a broader participant population or
compare human strategies to strategies by Al-based solvers.

Time vs. Moves Across Trials

500
450 °
400 o
350
300 °
250
200 ° ®
150 ® ° ® $
100
50

0 2 4 6 8 10

@ Time (sec) Moves

Fig. 7. Scatter plot showing Time vs. Moves Across Trials.

5.2. Experiment two

e The RL agent operates within a simulated Rubik’s Cube environment, where the
state represents the current configuration of the cube.

¢ The agent selects actions (rotations of cube faces) based on its current policy, which
is refined over time through learning.

¢ Rewards are assigned based on progress toward the solved state: moves that bring
the cube closer to completion yield higher rewards, while moves that do not
contribute to solving the cube result in lower or negative rewards.

¢ The agent’s policy is updated using experiences stored in replay memory, allowing
it to learn from both recent and past actions

14 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

5.2.1. Implementation Details
¢ The code is built around a DQN agent, which uses a neural network to estimate the
value (Q-value) of possible moves (see Figure 10) in each state.
e The agent employs an epsilon-greedy strategy (see Figure 11) to balance
exploration (random moves) and exploitation (best-known moves).

Rotations per Solution

—8— Rotations to Solve
80000

70000 -

60000

50000 -

Rotations

40000 -

30000 +

20000

10000 -

Solved Attempt

Fig. 8. Rotation per solution.

le—11+3e—2 Epsilon per Solved Attempt

2.00 1 —— Epsilon
1.75 A
1.50 A
1254

1.00

Epsilon

0.75 A

0.50

0.25

—0.00 §

0 2 4 6 8 10
Solved Attempt

Fig. 9. Epsilon per solution.

5.2.2. Procedure
¢ Each training episode begins with a scrambled cube.
¢ The agent attempts to solve the cube within a set number of moves.
e After each move, the agent:
= Observes the new state

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 15

= Receives a reward
= Stores the experience in replay memory
= Periodically samples batches from memory to train the neural network
e The agent’s performance is tracked via metrics such as the number of correctly
colored squares, rewards, randomness (exploration rate), and DQN loss (see Figures

12 and 13).
Average Reward per Solved Attempt
11.65 A
—— Avg Reward
11.60 -
sl
5 11.55 4
=
&
&
Il
5 11.50 1
z
11.45 -
11.40 -
0 2 a 6 8 10
Solved Attempt
Fig. 10. Rewards per solving attempt.
DQN Loss per Solved Attempt
—— DON Loss
4.65
4.60
4.55
E’ 4.50
4.45
4.40
4.35
' 2 a 6 8 10

Solved Attempt

Fig. 11. DQN loss status per attempt.

5.2.3. Results and Visualization
¢ The agent’s progress is visualized in real-time, showing the cube’s state and learning
metrics.

16 Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

e Over time, the agent improves its ability to solve the cube, requiring fewer moves
and achieving higher rewards as its policy becomes more effective.
e The model’'s weights are saved for future use, allowing continued training or
evaluation
This experiment demonstrates the effectiveness of reinforcement learning, specifically
DQN, in solving complex combinatorial puzzles like the Rubik’s Cube. The agent learns
optimal strategies through trial and error, refining its approach to maximize rewards and
efficiently reach the solved state.

5. Conclusion

The Rubik’s Cube, aside from being a best-selling puzzle, itself acts as a viable vehicle
for investigating artificial intelligence and human thinking. With its staggering quantity of
possible arrangements, the cube provides a perfect environment for problem-solving
techniques, learning mechanisms, and search heuristics to be explored. Since its discovery
by Erné Rubik in 1974, the cube has continued to challenge and motivate experts from
every walk of life.

Here, we observed how novice participants solved the Rubik’s Cube without prior
experience. The findings showed varying strategies and learning curvatures across
participants. All three became better with each passing day, yet their distinct journey to
arriving at the solution indicates flexibility and creativity in problem-solving by humans.
This concurs with the view that puzzles like the Rubik’s Cube provide insightful
information about processes like pattern detection, memory, and decision-making—
processes in which humans are superior even without any training.

At the same time, new developments in artificial intelligence exhibit impressive
performance in solving the Rubik's Cube through means like DeepCubeA, where deep
reinforcement learning in collaboration with search methods are applied to identify
optimal moves without any knowledge from humans. Robotic platforms like Dactyl are
able to exhibit how complex manipulation problems can be trained entirely with
simulation and translated to real-world setup through means like ADR. These systems are
nonetheless limited when it comes to generalization, success rate, and computational
efficiency, showing the disparity between machine and human intelligence.

This study explored the Rubik’s Cube as a platform for investigating both human and
artificial problem-solving strategies. Through two distinct experiments, we examined the
learning processes of human participants and a reinforcement learning agent. In the first
experiment, human participants with no prior experience were able to learn and improve
their Rubik’s Cube solving abilities within a short period, demonstrating the adaptability
and creativity inherent in human cognition. Their progress highlighted the role of self-
guided exploration and diverse learning strategies in mastering complex tasks.

The second experiment implemented a Deep Q-Network (DQN) agent to autonomously
learn to solve the Rubik’s Cube. The agent’s performance, as measured by metrics such
as exploration rate, DQN loss, number of rotations, and average reward, showed
substantial improvement over time. These results demonstrate the effectiveness of
reinforcement learning in navigating large, combinatorial state spaces and developing

Abbas, M.M.: Deep Reinforcement Learning: Insights from the Rubik’s Cube 17

efficient solution strategies without explicit human instruction.

Together, these findings underscore the Rubik’s Cube’s value as a benchmark for both
cognitive and computational research. While artificial agents can achieve high efficiency
and consistency through iterative learning, human solvers continue to exhibit flexibility
and ingenuity that remain challenging for current Al systems to fully replicate. Future
work may extend these approaches to more complex puzzles or hybrid human-Al
collaborative frameworks, further advancing our understanding of learning and problem-
solving in both natural and artificial systems.

For further investigation:

1. Expand Participant Diversity and Sample Size: Conduct experiments with a larger
and more diverse group of participants to better understand how factors such as age,
gender, cognitive style, and prior puzzle experience influence Rubik’s Cube problem-
solving strategies and learning curves.

2. Integrate Behavioural and Neurocognitive Analysis: Incorporate tools like eye-
tracking, EEG, or fMRI to study the cognitive processes underlying human problem-solving
during Rubik’s Cube tasks, providing deeper insights into attention, memory, and
decision-making mechanisms.

Abbreviation Term
RL Reinforcement Learning
DQN Deep Q-Network
ADR Automatic Domain Randomization
Al Artificial Intelligence
PDB Pattern Database
ADR Automatic Domain Randomization
PDBs Pattern Databases

Xi
a:U,U,L FF,UU,LFF

Current state of the Rubik’s Cube

move applied to the cube

Vy, Estimated value of taking action aa in state x;
A(xi,a) The new cube state after applying action a to state x;.
R(A(xi,a)) Reaching the new state

Maximum value achievable from the state x; by choosing
Vi the best action

The action x that achieves the maximum value y; (optimal
Ypi action).
References

1. Agostinelli F., McAleer S., Shmakov A., Baldi P.: Solving the Rubik’s cube with deep
reinforcement learning and search, in Nat. Mach. Intell., Vol. 1, no. 8, 2019, pp. 356—

363.

18

Bulletin of the Transilvania University of Brasov ¢ Vol. 17 (66), No. 2 — 2024 e Series |

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22.

23.

24.

Allen, K. et al.: Using games to understand the mind. In: Nat. Hum. Behav., vol. 8, no.
6, Jun. 2024, pp. 1035-1043.

Brandle, F., Allen, K.R., Tenenbaum, J., Schulz, E.: Using games to understand
intelligence. In: Proc. Ann. Meeting Cogn. Sci. Soc., 43, 2021.

Carlisle, R.P. Encyclopedia of Play in Today’s Society. Rutgers University, USA. SAGE
Publications, 2009.

De Castella, T.: The people who are still addicted to The Rubik’s Cube. In: BBC News
Magazine, Apr. 28, 2014.

DePaulis T.: Board games before Ur?, In: Board Game Stud. J., Vol. 14, 2020, pp. 127-
144,

‘Driven Mad’ Rubik’s Nut Weeps on Solving Cube... after 26 Years of Trying, Daily Mail
Reporter, 2009.

Europa. Interview with Erné Rubik, 2016. http://www.create2009 .europa.eu/ambas
sadors/profiles/erno_rubik.html.

Ferenc. D.: How to solve the rubik’s cube - beginners method, https://ruwix.com/the-
rubiks-cube/ how-to-solve-the-rubiks-cube-beginners-method/.

Frey, A.H., Singmaster D.: Handbook of Cubik Math. Enslow Publishers, 1982.
Gebhardt, D. et al.: The cube. New York: Black Dog & Leventhal Publishers, 2009.
Gobet, F., de Voogt, A., Retschitzki, J.: Moves in Mind: The Psychology of Board Games.
Psychology Press, 2004.

Jerome T.: Rubik’s Cube 25 Years on: Crazy Toys, Crazy Times. The Independent, 2007.
Kunkle D., Cooperman. G: Twenty-six moves suffice for Rubik’s cube, in Proc. of the
2007 Int. Symposium on Symbolic and Algebraic Computation, New York, NY, USA:
ACM, Jul. 2007, pp. 235-242.

Lee, J.: Beginner Solution to the Rubik’s Cube, 2008. http://peter.stillhg.com/jasmi
ne/rubikscubesolution.html.

McAleer, S., Agostinelli, F., Shmakov, A., Baldi P.: Solving the Rubik’s Cube Without
Human Knowledge, 2019.

Newell, A., Simon H.A.: Human problem solving. Prentice-Hall, 1972.

OpenAl. Solving Rubik’s Cube with a Robot Hand.

Ori J.: How Do You Beat the Rubik’s Cube?, 2017. https ://ourpa stime s.com/ do beat
rubik s cube 65089 60.html.

Rubik’s Cube: A Question Waiting to be Answered, 2014, https://www.youtu
be.com/watch?v=W1K2j djLhbo.

Rubik’s Cube Solver, 2016, https://rubik s cube solver.com.

Suchow, J. W., Griffiths, T., Hartshorne, J. K.: Workshop on scaling cognitive science.
In: sCognitive Science Society, 2020.

van Dulken, S. Inventing the 20th Century: 100 Inventions That Shaped the World. NYU
Press, 2002.

Zeng, D.-X., Li, M., Wang, J.-J., Hou, Y.-L., Lu W.-J., Huang Z.: Overview of Rubik’s Cube
and Reflections on Its Application in Mechanism. In: Chinese Journal of Mechanical
Engineering, Vol. 31, no. 1, Dec. 2018, p. 77.

