DETENTE AND POWER – DETERMINATION CONCEPTUALLY, FORMS AND MEANS OF EDUCATION AT THE PRETEEN AGE

C. PEHOIU1 C. SAVU1 S. BADEA1 T. OZBAY2

Abstract: The scientific perspective, the practice area of physical education and sports activities conditional power capacity in all its forms of expression, was and is a generator of research topics. Today theories that strength training athletes and slow down development progress will affect the strength and flexibility are discredited. On the other industries and/or samples whose results are sports of the way higher manifestation of power as a result of the composition of the force and velocity, are based in this respect, the systematic and continuous development of both capacity biometric said. The current research concerns are about the issues related to detente and maximum anaerobic power, with a diversity of views on the conceptual layout and the possibilities of evaluation of expressions of their parameters. Detention is an expression of muscle elasticity. From this perspective, approaches the muscle elasticity can be divided generally into two categories: a) increase the maximum work in a concentric contraction, performed by a previously stretched muscle, b) mechanical efficiency in an effort under - maximum alternating concentric with the eccentric contraction. Elastic deformation a force contrary to its meaning, the action is other than the conversion of chemical energy in a mechanical. Power is the ability of the neuromuscular system to produce the greatest force possible in the shortest time possible. Any increase in power is the result of improvements in either speed or strength, or a combination of both. Browse a distance in the shortest possible time is the effect of the event power, the result of rapid and vigorous contraction of skeletal muscle, manifested in the ability to accelerate, gestural and high repetition. Training of force in children was and is controversial. Fear of injury or premature stop the growth process in the past made the children be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example, most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhance their process, such as athlete much better prepared to meet requests training and competitions. Preparation of force and provide a solid basis for further phases in the highest performance.

Keywords: physical education, sports, anaerobic power, detente, force, speed.

1 Valahia"u University, Târgovişte, Department of Physical Education and Sport.
2 High school Diyarbakır, Turkey.
1. Introduction

1.1. Conceptual determinations

Characteristic of locomotory triple chain extensions, detention results, observed immediately detach from the body supporting surface either horizontally or vertically. In other words, this attribute must be understood as an effect that can be measured by a dimensionless quantity that expresses how many times greater than the useful energy, the detachment said, compared with that consumed by specific muscle contraction momentum. However success is not assured without understanding and inclusion principles and requirements of biomechanical and physical nature of the specific training and their inclusion in the training program (Bompa TO, 2002). From this perspective detention is the result of eccentric contractions followed by a concentric, conversion recognized in the literature as the amortization phase, which may be educated or trained to produce in as short a time, training actually changing reaction force in terms of continuing the muscle contraction (approximate) reaction time, muscle tensioning reflux. Shorter time stretching or elongation of a muscle leads to registration of senior indices show concentric strength expressed by a strong movement should prevail own body weight or inertia of an external object.

Detention is an expression of muscle elasticity. From this perspective, approaches the muscle elasticity can be divided generally into two categories:

i. increase the maximum work in a concentric contraction, performed by a previously stretched muscle,

ii. mechanical efficiency in an effort under - maximum alternating concentric with the eccentric contraction. Elastic deformation a force contrary to its meaning, the action is other than the conversion of chemical energy in a mechanical

Power is the ability of the neuromuscular system to produce the greatest force possible in the shortest time possible. Any increase in power is the result of improvements in either speed or strength, or a combination of both. Browse a distance in the shortest possible time is the effect of the event power, the result of rapid and vigorous contraction of skeletal muscle, manifested in the ability to accelerate, gestural and high repetition. On the terminology and experience in the field expressions explosive force, detention and rapid force may be synonymous with the force-velocity, the latter expressing the capacity that has a neuromuscular system to overcome resistance with the highest speed of contraction possible. A comprehensive point of view, the use of the term of imprisonment and its definition, had Ozolin N.G. (1972), which decrease the duration of analyzing the possibilities of stroke samples athletic jumps argued that „the rate of stroke depends on the state of the central nervous system, the effort of will, strength and elasticity of muscles, the correct execution of movements. Specifically, it is one of the few specialists that since the emergence of new concepts related to sports training, of particular importance psychological factor and the central and peripheral nervous system in movement execution, when made reference to detention.

1.2. Age, detention and power

Training of force in children was and is controversial. Fear of injury or premature stop the growth process in the past made the children be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example,
most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhance their process, such as athlete much better prepared to meet requests training and competitions. Preparation of force and provide a solid basis for further phases in the highest performance (Bompa TO, 2001).

Certainly, conducting training of forces in different regimes of work, from the age of 8-9 years, the rules require methodical, among which those that between 8-10 years, it takes a preparation to dumbbells (1.250 -2.500 kilograms) for analytical development of all muscle groups while acquiring proper driving skills. In terms of exercises using additional charges, the literature states the following: 11-13 years will be to use loads that will represent 30% of body weight, between 13-14 years will not exceed 70% reported the same indicator somatic, and over that age may be used which may exceed the body weight.

Children should not engage in weight training or exercises pliometrics before puberty. On the other hand, force-strength training using weights, smaller and with more repetitions are useful and have a high degree of safety. For those already known in the field, while the ideal start of a vigorous workout with weights would be desirable to fit between the end of adolescence, after the rapid growth and scapular belt chickling vetch closed.

2. Developing methods for holder and power

For the first time or training time was used pliometrics American coach Fred Wilt. Opinions are divided on the origin of the concept, some say they rooted in Latin Plio + feet, which we give the meaning of „measurable increases” other transfer origin concept in ancient Greece, the word „plethyein” which means „to increase „and the word feet”, which means measure. Pliometry quickly became known to coaches and athletes, as the years have been targeting a combination of force and speed of movement to produce power. Training is pliometrics strictly anaerobic and uses the energy potential of a muscle prior to an act Driving characterized by explosive effort, using a maximum power, the ground support legs are as short as possible.

Methods based on the principle of muscle tension changes. They start from the presumption that a contraction pliometrics is composed of three phases: the eccentric, isometric a short time, the concentric.[1]

Isometric contractions expressed, by their very nature, that during their event there is no movement. The existence of equilibrium between the active force (caused by muscle tension on) and the resistive burdening addition, include the weight segments. Theoretically, they are contraindicated for development detention, because they have the effect of quality development contractile muscle fibers tonic or tonic from phasic muscles. If account is taken of the fact that detention is influenced by passive structures, then isometric contractions, judicious dose may be considered beneficial development detention.

This is because, in most cases the changes levers, gravity positions are not essential to the relationship between muscle tension and force resistive. For example, if the halter years back, the position of genuflexion, thigh to leg extension involves a task is performed on quadriceps muscle strength and develop it. Increasing muscle strength, speed of contraction is increased, the result is expressed in superscript expression of detention.
Isokinetic means a constant speed contractions involving muscle shortening that is contracted. As the speed of implementation increases, the number of fibers which can make such a contraction is reduced, adding to the weight of the contractor, which corresponds to a single motion without load isokinetics. And this kind of means can be taken into account in making development of detention.

Contractions expressed as auxotone contraction speed and muscle tension that varies concomitantly. The means of expression are multiple and used usually moves from or made on inclined plane. They are more efficient with how it performed with a higher speed, the more than auxotonic.

Pseudo-contractions are movements carried out in special cases when resistive force (weight or load) exceeds the driving force of the muscles involved in movement (ability contraction), contraction is eccentric type / failure). Since this kind of contractions that there is no possibility of control of movements of transfer, it must be performed only in the devices and devices capable of limited movement with safety devices.

Over-speed contractions or supra-maximal contractions caused by a synergistic muscle strength in supporting it. In normal cases, when the contraction movement is performed by weight, or weight of the segment involved, we are dealing with a movement full speed.

Synthetic method. It simultaneously addresses all components pliometric contraction. The shortcomings are that you can install custom gesture of driving, with repercussions on the progress, such as when a high jumper in using training as a means of repeated jumping. This method involves two choices: to work with relief and work with burdening.

Methods. Contribute selective type thing eccentric isometric and concentric. Certainly, this does not mean that lifelong training is working in one way. Efficiency is greatly increased if the alternate types of work. Amid natural to obtain high performances have developed different variants of this method.

Method effort by contrast or „Bulgarian method. In this method the alternation of work with heavy load with an easy, Bulgarians have replaced the last of pliometriy exercises so that the series does appear the following form: 2 repetitions - 70% + 4 jumping fences 4 feet closer than 2 repetitions + 70% + 4 jumping fences over 4 feet closer. This series is repeated for 6-8 times.

3. Organizing and conducting research

Premises. Size vertically leap through triple extension, without enthusiasm or rapid flexion is considered as a measure of detente anaerobic absolute maximum instantaneous power. Evaluation indices show the detention is necessary to approach the primary or secondary selection and subsequently to establish the level of training even though the two issues are subject to a large extent in terms of genes.

Hypothesis. By applying the correct, timely, systematic and continuing during the hours of physical education and / or sports training, the specific means and methods, can be influenced significantly increased indices of expression of detente and maximum anaerobic power in children and athletes preteen.

Subjects. The research involved a cross-type educational experiment that was conducted in five urban schools, a total of 489 children, of which 275 girls and 214 boys in classes V-VIII. The School choice was envisaged that their students can conduct physical education activities during the cold season in sports halls specially built for such activities.
In order to achieve the tests were involved teachers from schools and students said the program of physical education and sports are in schools that pedagogical practice. Initial and final testing took place under the same conditions for all subjects at the beginning of the semester I in the terminal that the second half of the school year 2005-2006. A relatively small number of subjects (15%) practice athletics, basketball, football, judo, wrestling in the profile sections at the Sport School of the city environment or recalled. Most of the subjects are engaged in independent practice activity exercise, in various forms, outside school, daily or weekends.

Methods used. To achieve the study were applied several established methods of research: scientific-methodical literature review, observation tutorials, tests and measurements, the experiment teaching math and processing of statistical, graphical and tabular representation method.

4. Means used

There were used two types of practice, a predominantly pliometric force development with or without objects, including other education specific speed exercises, for example - Running short of 15-20 m, with departures from different positions (relay games, movement); Running between two landmarks located just 3 m (relay), running with knees up, with legs swinging back and forth, running to climb and descend the stairs, running to change direction, standing starts, with acceleration on 15-20 m; Running distances 20-30-40-50 m

To create a correct pliometric program must know that the exercises vary in intensity level and are classified into different groups to ensure better progress:

1. Low impact exercises - including jumping rope, lift, jumping small steps, steps jump and bounce, jumping over low hurdles of 25-30 cm, throwing a medicine ball, exercises with elastic bands;

2. High-impact exercises - including the long jump and plurileaps place, jumping over obstacles of 35 cm and higher, jumping into deep water and counter-movement.

Basically, there are 5 levels of intensity of pliometric exercises, we will present the following table, along with recommendations on their volume lesson and rest intervals:

<table>
<thead>
<tr>
<th>Level of intensity</th>
<th>Type exercises</th>
<th>Intensity exercises</th>
<th>repetitions and sets</th>
<th>repetitions per lesson</th>
<th>Interval of rest between sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Counter-jumping high,> 30 cm.</td>
<td>Maximum</td>
<td>8.5 x 10-20</td>
<td>120-150</td>
<td>8-10 min.</td>
</tr>
<tr>
<td>2</td>
<td>Jumping in depth 80-100 cm</td>
<td>Very high</td>
<td>5-15 x 5-15</td>
<td>75-150</td>
<td>5-7 min.</td>
</tr>
<tr>
<td>3</td>
<td>Exercises with jumps: Of both legs - On one leg</td>
<td>Sub-maximal</td>
<td>3-25 x 5-15</td>
<td>50-250</td>
<td>3-50 min.</td>
</tr>
<tr>
<td>4</td>
<td>Counter-Jumping lower 20-30 cm</td>
<td>Moderate</td>
<td>10-25</td>
<td>150-250</td>
<td>3-50 min.</td>
</tr>
<tr>
<td>5</td>
<td>Jumping low impact / target shooting</td>
<td>Minor</td>
<td>10-30 x 10--15</td>
<td>50-300</td>
<td>2-3 min.</td>
</tr>
</tbody>
</table>
5. Results and their interpretation

Intervention by the means mentioned in physical and sports activities of students during a school year allowed the surprise of changes in performance recorded from a test to another. Starting from the fact that detention is a dimensionless quantity and its measure is given by vertical jump height and maximum instantaneous anaerobic power is work done per unit time following registration times and boost phase of the flight period, students during the two tests, could calculate the indices of these two parameters: vertical jump height and maximum instantaneous anaerobic power.

Taking into account the large number of pupils and students in each year of study, relatively large percentage of their school population, relative to age and sex, participate in the test samples are representative. Thus, for example in the city where they conducted research there are 13 schools with an average of 2 classes each, from a look at the eighth with an average of 23 students each. Of the 598 students who attended the fifth grade, the total number of 286 boys, 100 were tested, representing a rate of 34.90% and in girls, the number of 312 were tested 149 (48.06%).

Regarding the average values of vertical height based on results from initial testing situation is as follows: the class V, the reference, the average performance achieved by the subjects is at 23.18 cm, while in the experimental recorded 22.27 cm, grade VI, witness, the average is 23.61 cm and 22.84 cm for the experimental to the VII, 23.98 cm for the reference class and 24, 11 cm for the experiment, the eighth grade was calculated for an average of 24.16 cm and 23.59 cm reference grades for classes of experiment. As can be seen from data of expression level of detention is one higher in the control classes, but changes the values suffer from the second test (Fig. 1).

![Fig. 1. Comparative values of the initial test](image)

Thus, the classes will be progressing from 1.41 cm to reference classes (value recorded 24.57 cm), and the classes of experiment 3.73 cm (25.98 cm recorded value). The sixth grade classes reference values have progressed by 0.76 cm and 2.91 cm class experiment (values recorded 24.35 cm, 25.73 cm respectively). In grade VII rates of progress are increasingly registering values of 1.94 cm, 3.3 cm respectively (data recorded 27.12 cm 25.90 cm) for the two categories of subjects. Classes VIII again before we make progress decreased 1.25 cm, respectively
2.65 cm, from 24.14 cm to 25.39 cm in reference classes, and from 23.57 cm to 26.22 cm classes of experiment. Those values, expressed as a percentage, are given in Figure 2. Analysis of data presented and their comparison chart shows an initial increase in expression of the vertical height of 6.8%, respectively 16.76% for classes you reference and experiment. In sixth grade, the rate of progress is at 3.22% to reference classes and 12.75% in the experimental classes. Regarding grade VII, is an increase of 8.09% to reference classes, respectively 12.57% in the experimental classes and in eighth grade of 5.17%, to classes reference, and 8.30% in classes of experiment.

Statistical indices calculated at the beginning and the end of this experiment allow classification control and experimental classes in the category caterers with a mean uniformity and standard deviations calculated us to say that indicates a degree of dispersion rather than from the average (Fig. 3).
The values recorded for reference grades will increase by 14 W shows, from 351 W at 1-365 testing testing w 2, and the classes of experiment progress is 59 w, 402 w testing from 1 to 461 W at second. The sixth grade is increased by 16 W from 429 W to 445 W, the reference classes and the classes of experiment 49 W, from 444 W to 493 W. In class VII of reference biological rate of progress is 22 W from 472 W to 494 W, and the rate of progress experiment classes is 54 W from 516 W to 570 W.

Classes VIII shows that the values of increase of 18 W from 512 W to 530, and the classes of experiment 51 W, from 532 W to 583 W. What must be noted is constantly changing during class V - VII of the rate of progress in less than eighth grade, relative to the age and development (Fig. 4).

![Fig. 4. Evolutionary stage of maximum instantaneous anaerobic](image)

Percentage rates of progress of the experiment to the class reference is as to fifth grade classes from 3.98% to 14.67% from reference and experimental classes and in classes VI to 3.72% from reference classes, ie 11.03% in the experimental classes In grades VII, values are at 3.56% to 10.46% reference classes to classes of experiment, and the eighth grade reference, the percentage rate of progress is 3.51%, and the reference to 9.58% in the experimental classes (Fig. 5).

![Fig. 5. Rates of progress of maximum anaerobic power expressed in percent](image)
We girls at grades in estimating t calculated: $t = 3.85$, by Student special table, the degrees of freedom for the reference class vertical jump height are $n - 1 = 20$. After distribution of values of Table 7 for 20 degrees of freedom to the materiality $P = 0.05$, $t = 2.086$ and $P = 0.01$ $T * 2.845$, yielding the value found indicates a significant difference between the two environments. For the same conditions tabular Student in the instant of maximum anaerobic power, calculated $t (t = 7.95)$ indicates significant differences between the two environments.

In assessing the value of t calculated:
$t = 18.03$, for vertical jump height, as special student table, degrees of freedom for the classes of experiment are $n - 1 = 119$. After the table of t distribution values for 119 degrees of freedom at the threshold of significance $P = 0.05$, $t = 1.979$ and $P = 0.01$ $t = 2.621$, that value indicates a significant difference found between the two areas. For the same Student tabular conditions in the power of t calculated: $t = 3.294$, after Student special table, the degrees of freedom for the reference class vertical jump is the $n - 1 = 21$.

After the table of t distribution values for 21 degrees of freedom to the materiality $P = 0.05$, $t = 2.080$ and $P = 0.01$ $t = 2.861$, that value indicates a significant difference found between the two environments. For the same conditions tabular Student in the instant of maximum anaerobic power, the calculated $t (t = 6.209)$ indicated significant differences between the two environments. For the grade for boys, the appreciation of the value of t calculated $= 4.005$, by Student special table, the degrees of freedom for the classes of experiment are $n - 1 = 19$. After the table of t distribution for 19 degrees of freedom to the materiality $P = 0.05$, $t = 2.093$ and $P = 0.01$ $t = 2.861$, that value indicates a significant difference found between the two environments.

In assessing the value of t calculated: $t = 15.70$, for vertical jump height, as special student table, degrees of freedom for the classes of experiment are $n - 1 = 94$. After the table of t distribution values for 94 degrees of freedom to the materiality $P = 0.05$, $t = 1.988$ and $P = 0.01$ $t = 2.633$, that value indicates a significant difference found between the two areas. For the same Student tabular conditions in the maximum instantaneous anaerobic power, the calculated $t (t = 15.81)$ indicated significant differences between the two environments.

The sixth grade boys, in appreciation of the value of t calculated: $t = 4.551$, by Student special table, the degrees of freedom for the classes of experiment are $n - 1 = 20$. According to the table of t distribution values for 20 degrees of freedom to the materiality $P = 0.05$, $t = 2.086$ and $P = 0.01$ $t = 2.845$, that value indicates a significant difference found between the two environments. For the same conditions tabular Student in the instant of maximum anaerobic power, calculated $t (t = 6.209)$ indicate significant differences between the two environments.

In assessing the value of t calculated: $t = 10.347$, for vertical jump as special student table, degrees of freedom for the classes of experiment are $n - 1 = 77$. After the table of t distribution values for 77
degrees of freedom to the materiality $P = 0.05$, $t = 1.991$ and $P = 0.01$ $t = 2.641$, that value indicates a significant difference found between the two environments. For the same conditions tabular Student in the instant of maximum anaerobic power, the calculated t ($t = 15.611$) indicate significant differences between the two environments.

6. Conclusions

Regardless of the area in which we operate (in this case, physical education or sports) the rules, the default principles is essential to achieve objectives.

The principle of gradual adaptation to applications developed in the paper is the foundation training pliometric, and beyond. Taken together, changes in terms of detente vertical jump and the maximum instantaneous anaerobic power, we can say that there is a positive development and largely significant. The highest values of the rate of progress is recorded in the grade and will VI.

The most spectacular increase in the secondary cycle guys are recorded in the seventh grade of both the reference classes, but especially in the experiment. As the girls emphasized that progress is observed in sixth grade and seems to be attributed to the installation of puberty, in boys it is delayed by one year, which entitles us to believe that at this level high rate of progress can be attributed same cause.

Notes

References