SUBMANIFOLDS OF WRAPPED PRODUCT MANIFOLDS
$I \times_f S^{m-1}(k)$ FROM A p-HARMONIC VIEWPOINT

Bang-Yen CHEN* and Shihshu Walter WEI†

Abstract

We study p-harmonic maps, p-harmonic morphisms, biharmonic maps, and quasiregular mappings into submanifolds of warped product Riemannian manifolds $I \times_f S^{m-1}(k)$ of an open interval and a complete simply-connected $(m-1)$-dimensional Riemannian manifold of constant sectional curvature k. We establish an existence theorem for p-harmonic maps and give a classification of complete stable minimal surfaces in certain three dimensional warped product Riemannian manifolds $\mathbb{R} \times_f S^2(k)$, building on our previous work. When $f \equiv \text{Const.}$ and $k = 0$, we recapture a generalized Bernstein Theorem and hence the Classical Bernstein Theorem in \mathbb{R}^3. We then extend the classification to parabolic stable minimal hypersurfaces in higher dimensions.

2000 Mathematics Subject Classification: Primary: 58E20; Secondary 53C40, 53C42.

Key words: Warped product, minimal submanifold, stable minimal submanifold.

*Department of Mathematics, Michigan State University, East Lansing, Michigan 48824-1027, U.S.A., E-mail address: bychen@math.msu.edu
†Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-0315, U.S.A., E-mail address: wwei@ou.edu

* Research was partially supported by NSF Award No DMS-0508661.