CLASSES OF HARMONIC FUNCTIONS DEFINED BY SALEGEAN-TYPE q–DIFFERENTIAL OPERATORS

Jay M. JAHANGIRI1, Kaliappan UMA*2 and Kaliappan VIJAYA3

Abstract

We consider a complex-valued harmonic functions that are univalent can be written in the form $f = h + \bar{g}$, where h and g are analytic, in a simply connected domain U and sense preserving in U, is that $|h'(z)| > |g'(z)|$ in U. Making use of Salegean q– differential operators, we define a new subclasses harmonic starlike functions and obtain sufficient coefficient bounds, distortion theorems and extreme points for f in the new function class. Moreover, we shown that these necessary coefficient bounds are also sufficient for those functions that have negative coefficients.

2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.

Key words: harmonic, univalent, Salegean-type q– differential operators.

1 Introduction

A continuous function $f = u + iv$ is a complex-valued harmonic function in a complex domain Ω if both u and v are real and harmonic in Ω. In any simply connected domain $D \subset \Omega$ we can write $f = h + \bar{g}$ where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $|h'(z)| > |g'(z)|$ in D (see [2]).

Let \mathcal{H} be the family of functions $f = h + \bar{g}$ which are harmonic univalent and sense preserving in the open unit disc $\mathbb{U} = \{ z : |z| < 1 \}$ so that f is normalized by $f(0) = h(0) = f_z(0) - 1 = 0$. Such functions $f = h + \bar{g} \in \mathcal{H}$ may be expressed by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1. \quad (1)$$

1Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A. e-mail: jjahangi@kent.edu
2Corresponding author, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India. e-mail: kuma@vit.ac.in
3Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, India. e-mail: kvijaya@vit.ac.in.
We note that the family \(\mathcal{H} \) of orientation preserving, normalized harmonic univalent functions reduces to the well known class \(\mathcal{S} \) of normalized univalent functions if the co-analytic part of \(f = h + \overline{g} \) is identically zero, that is \(g \equiv 0 \). We let \(\mathcal{H} \) be the subclass of \(\mathcal{H} \) consisting harmonic functions of the form \(f_m = h + g_m \) where

\[
h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g_m(z) = \frac{(-1)^m}{m} \sum_{n=1}^{\infty} b_n z^n
\]

(2)

so that \(a_n \geq 0 \) and \(b_n \geq 0 \).

We recall the notion of \(q \)-operators or \(q \)-difference operators that play vital roles in the theory of hypergeometric series, quantum physics and operator theory. The application of \(q \)-calculus was initiated by Jackson [4] and Kanas and Răducanu [8] who have used the fractional \(q \)-calculus operators in investigations of certain classes of functions which are analytic in \(U \). For more details on \(q \)-calculus and its applications one can refer to [1, 3, 4, 8] and the references cited therein.

For 0 < \(q < 1 \) the Jackson’s \(q \)-derivative of a function \(f \in \mathcal{S} \) is given as follows [4]

\[
D_q f(z) = \begin{cases}
\frac{f(z) - f(qz)}{(1-q)z} & \text{for } z \neq 0, \\
 f'(0) & \text{for } z = 0,
\end{cases}
\]

(3)

\[
D_q^2 f(z) = D_q(D_q f(z)).
\]

From (3), we have \(D_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1} \) where \([n]_q = \frac{1-q^n}{1-q} \) is sometimes called the basic number \(n \). If \(q \to 1^- \) then \([n] \to n \). For \(f \in \mathcal{S} \), Govindaraj and Sivasubramanian [3] considered the Salagean \(q \)-differential operators

\[
D_q^0 f(z) = f(z),
\]

\[
D_q^1 f(z) = zD_q f(z),
\]

\[
D_q^m f(z) = zD_q^m(D_q^{m-1} f(z)),
\]

\[
D_q^m f(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n \quad (m \in \mathbb{N}_0, z \in U).
\]

We note that if \(\lim_{q \to 1^-} \) then

\[
D_q^m f(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n \quad (m \in \mathbb{N}_0, z \in U)
\]

is the familiar Salagean derivative[9]. Recently Jahangiri [6] considered a generalized Salagean \(q \)-differential operator for harmonic function \(f = h + \overline{g} \in \mathcal{H} \) defined for \(m > -1 \) by

\[
D_q^m f(z) = D_q^m h(z) + (-1)^m D_q^m g(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n + (-1)^m \sum_{n=1}^{\infty} [n]_q^m b_n z^n.
\]

(4)
As a generalization of the functions defined in [6], for $0 \leq \alpha < 1$, we let $\mathcal{HR}^m(\lambda, \alpha)$ be the subclass of \mathcal{H} consisting of functions $f = h + \overline{g}$ of the form (1) so that
\[
\Re \left(\frac{D^m_{q+1} f(z)}{(1 - \lambda)D^m_q f(z) + \lambda D^m_{q+1} f(z)} \right) \geq \alpha \tag{5}
\]
where $0 \leq \lambda < 1$, $D^m_q f$ is given by (4) and $z \in \mathbb{U}$. We also let $\mathcal{FR}^m(\lambda, \alpha) = \mathcal{HR}^m(\lambda, \alpha) \cap \mathcal{F}$. Obviously, for $\lambda = 0$ we have $\mathcal{FR}^m(\lambda, \alpha) \equiv \mathcal{FR}^m(\alpha)$ considered in [6]. It is the aim of this paper to obtain sufficient coefficient bounds, distortion theorems and extreme points for functions in $\mathcal{HR}^m(\lambda, \alpha)$. Moreover we show that these necessary coefficient bounds are also sufficient for functions in $\mathcal{FR}^m(\lambda, \alpha)$.

2 Main Results

First we obtain a sufficient coefficient condition for functions in $\mathcal{HR}^m(\lambda, \alpha)$.

Theorem 1. Let $f = h + \overline{g}$ be given by (1). If
\[
\sum_{n=1}^{\infty} [n]_q^m \left\{ ([n]_q - \alpha - \alpha \lambda ([n]_q - 1)) |a_n| + ([n]_q + \alpha - \alpha \lambda ([n]_q + 1)) |b_n| \right\} \leq 2(1 - \alpha) \tag{6}
\]
where $a_1 = 1$ and $0 \leq \alpha < 1$, then $f \in \mathcal{HR}^m(\lambda, \alpha)$.

Proof. We will show that if (6) holds for the coefficients of $f = h + \overline{g}$ then the required condition (5) is satisfied. We note that (5) can be rewritten as
\[
\Re \left(\frac{D^m_{q+1} h(z) - (-1)^m D^m_{q+1} g(z)}{(1 - \lambda)(D^m_q h(z) + (-1)^m D^m_q g(z)) + \lambda(D^m_{q+1} h(z) - (-1)^m D^m_{q+1} g(z))} \right)
\]
\[
= \Re \left(\frac{A(z)}{B(z)} \right) \geq \alpha
\]
where
\[
A(z) = D^m_{q+1} h(z) - (-1)^m D^m_{q+1} g(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n - (-1)^m \sum_{n=1}^{\infty} [n]_q^m b_n z^n
\]
and
\[
B(z) = (1 - \lambda)(D^m_q h(z) + (-1)^m D^m_q g(z)) + \lambda(D^m_{q+1} h(z) - (-1)^m D^m_{q+1} g(z))
\]
\[
= z + \sum_{n=2}^{\infty} [n]_q^m (1 - \lambda + \lambda [n]_q) a_n z^n + (-1)^m \sum_{n=1}^{\infty} [n]_q^m (1 - \lambda - \lambda [n]_q) b_n z^n.
\]
Using the fact that $\Re \{ w \} \geq \alpha$ if and only if $|1 - \alpha + w| \geq |1 + \alpha - w|$, it suffices to show that
\[
|A(z) + (1 - \alpha) B(z)| - |A(z) - (1 + \alpha) B(z)| \geq 0. \tag{7}
\]
Substituting for $A(z)$ and $B(z)$ in (7), we get
\[
|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)|
\]
\[
= |(2 - \alpha)z + \sum_{n=2}^{\infty} [n]_q m \{[n]_q + 1 - \alpha(1 - \lambda + \lambda[n]_q)\} a_n z^n
\]
\[
- \sum_{n=1}^{\infty} |[n]_q - (1 - \alpha)(1 - \lambda - \lambda[n]_q)| b_n |z|^n
\]
\[
- \sum_{n=2}^{\infty} |[n]_q - (1 + \alpha)(1 - \lambda + \lambda[n]_q)| a_n |z|^n
\]
\[
- \sum_{n=1}^{\infty} |[n]_q + (1 + \alpha)(1 - \lambda - \lambda[n]_q)| b_n |z|^n
\]
\[
\geq (2 - \alpha)|z| - \sum_{n=2}^{\infty} [n]_q m \{[n]_q + (1 - \alpha)(1 - \lambda + \lambda[n]_q)\} |a_n| |z|^n
\]
\[
- \sum_{n=1}^{\infty} [n]_q m \{[n]_q - (1 - \alpha)(1 - \lambda - \lambda[n]_q)\} |b_n| |z|^n
\]
\[
- \alpha|z| - \sum_{n=2}^{\infty} [n]_q m \{[n]_q - (1 + \alpha)(1 - \lambda + \lambda[n]_q)\} |a_n| |z|^n
\]
\[
- \sum_{n=1}^{\infty} [n]_q m \{[n]_q + (1 + \alpha)(1 - \lambda - \lambda[n]_q)\} |b_n| |z|^n
\]
\[
\geq 2(1 - \alpha)|z| \left(2 - \sum_{n=1}^{\infty} [n]_q m \left[\frac{[n]_q - \alpha - \alpha \lambda([n]_q - 1)}{1 - \alpha} \right] |a_n| + \frac{[n]_q + \alpha - \alpha \lambda([n]_q + 1)}{1 - \alpha} |b_n| \right) |z|^{n-1}
\]
\[
\geq 2(1 - \alpha) \left(2 - \sum_{n=1}^{\infty} [n]_q m \left[\frac{[n]_q - \alpha - \alpha \lambda([n]_q - 1)}{1 - \alpha} \right] |a_n| + \frac{[n]_q + \alpha - \alpha \lambda([n]_q + 1)}{1 - \alpha} |b_n| \right)
\]

The above expression is non negative by (6) and so $f(z) \in \mathcal{H}^m_\phi(\lambda, \alpha)$. \hfill \Box

For $\lambda = 0$ we obtain the following corollary which is also given by Jahangiri [6].

Corollary 1. Let $f = h + \overline{g}$ be given by (1). If
\[
\sum_{n=1}^{\infty} [n]_q m \{([n]_q - \alpha)|a_n| + ([n]_q + \alpha)|b_n|\} \leq 2(1 - \alpha)
\]
where $a_1 = 1$ and $0 \leq \alpha < 1$, then $f \in \mathcal{H}^m_\phi(\alpha)$.

Jay M. Jahangiri, K. Uma and K. Vijaya
The starlikeness of the functions given in Theorem 1 follows from Theorem 1 given in [5] and noticing that
\[[n]_q - \alpha - \alpha \lambda ([n]_q - 1) \leq [n]_q - \alpha \leq n - \alpha \]
and
\[[n]_q + \alpha - \alpha \lambda ([n]_q + 1) \leq [n]_q + \alpha \leq n + \alpha. \]

Next we show that the coefficient bounds (6) are also sufficient for functions in \(\mathcal{FR}_q^m(\lambda, \alpha) \).

Theorem 2. Let \(f_m = h + \overline{g}_m \) given by (2) is in \(\mathcal{FR}_q^m(\lambda, \alpha) \) if and only if
\[
\sum_{n=1}^{\infty} [n]_q^m \{([n]_q - \alpha - \alpha \lambda ([n]_q - 1)) a_n + ([n]_q + \alpha - \alpha \lambda ([n]_q + 1)) b_n \} \leq 2(1 - \alpha)
\]
where \(a_1 = 1 \) and \(0 \leq \alpha < 1 \).

Proof. Since \(\mathcal{FR}_q^m(\lambda, \alpha) \subset \mathcal{FR}_q(\lambda, \alpha) \), we only need to prove the "only if" part of the theorem. To this end, for functions \(f_m = h + \overline{g}_m \) in \(\mathcal{FR}_q^m(\lambda, \alpha) \) we must have
\[
\Re \left(\frac{D_q^{m+1} f_m(z)}{(1 - \lambda) D_q^m f_m(z) + \lambda D_q^{m+1} f_m(z)} \right) \geq \alpha
\]
or equivalently,
\[
\Re \left(\frac{(1 - \alpha) z - \sum_{n=2}^{\infty} [n]_q^m \{([n]_q - \alpha - \alpha \lambda ([n]_q - 1)) a_n z^n \}}{z - \sum_{n=2}^{\infty} [n]_q^m (1 - \lambda + \lambda [n]_q) a_n z^n + (-1)^{2m} \sum_{n=1}^{\infty} [n]_q^m (1 - \lambda - \lambda [n]_q) b_n \overline{z}^n} \right)
\]
and
\[
\Re \left(\frac{(-1)^{2m} \sum_{n=1}^{\infty} [n]_q^m \{([n]_q + \alpha - \alpha \lambda ([n]_q + 1)) b_n \overline{z}^n \}}{z - \sum_{n=2}^{\infty} [n]_q^m (1 - \lambda + \lambda [n]_q) a_n z^n + (-1)^{2m} \sum_{n=1}^{\infty} [n]_q^m (1 - \lambda - \lambda [n]_q) b_n \overline{z}^n} \right) \geq 0.
\]

The above condition must hold for all values of \(z \) in \(\mathbb{U} \). Upon choosing the values of \(z \) on the positive real axis where \(0 \leq z = r < 1 \), we must have
\[
\left((1 - \alpha) - \sum_{n=2}^{\infty} [n]_q^m \{([n]_q - \alpha - \alpha \lambda ([n]_q - 1)) a_n r^{n-1} \} \right)
\]
\[
- \sum_{n=1}^{\infty} [n]_q^m \{([n]_q + \alpha - \alpha \lambda ([n]_q + 1)) b_n r^{n-1} \} \times
\]
\[
\left(1 - \sum_{n=2}^{\infty} [n]_q^m (1 - \lambda + [n]_q \lambda) a_n r^{n-1} + \sum_{n=1}^{\infty} [n]_q^m (1 - \lambda - [n]_q \lambda) b_n r^{n-1} \right)^{-1} \geq 0.
\]
If the condition (8) does not hold, then the numerator in the above inequality is negative for \(r \) sufficiently close to 1. Hence, there exists \(z_0 = r_0 \) in \((0,1)\) for which the left hand side of the above inequality is negative. This contradicts the required condition for \(f(z) \in \mathcal{F}R_m^q(\lambda, \alpha) \) and so the proof is complete.

Next we determine the extreme points of closed convex hulls of \(\mathcal{F}R_m^q(\lambda, \alpha) \) denoted by \(\text{clco}\mathcal{F}R_m^q(\lambda, \alpha) \).

Theorem 3. A function \(f_m(z) \in \mathcal{F}R_m^q(\lambda, \alpha) \) if and only if

\[
f_m(z) = \sum_{n=1}^{\infty} \left(X_n h_n(z) + Y_n g_{nm}(z) \right)
\]

where \(h_1(z) = z, \ h_n(z) = z - \frac{1-\alpha}{[n]_q ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))} z^n; \ (n \geq 2), \) and \(g_{nm}(z) = z + \frac{(-1)^m(1-\alpha)}{[n]_q ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))} z^n; \ (n \geq 2), \sum_{n=2}^{\infty} (X_n + Y_n) = 1, \ X_n \geq 0 \text{ and } Y_n \geq 0.

In particular, the extreme points of \(\mathcal{F}R_m^q(\lambda, \alpha) \) are \(\{h_n\} \) and \(\{g_{nm}\} \).

Proof. First, we note that for \(f_m \) as given in the theorem, we may write

\[
f_m(z) = \sum_{n=1}^{\infty} \left(X_n h_n(z) + Y_n g_{nm}(z) \right)
\]

\[
= \sum_{n=1}^{\infty} (X_n + Y_n) z - \sum_{n=2}^{\infty} \frac{1-\alpha}{[n]_q ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))} X_n z^n
\]

\[
+ (-1)^m \sum_{n=1}^{\infty} \frac{1-\alpha}{[n]_q ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))} Y_n z^n
\]

\[
= z - \sum_{n=2}^{\infty} A_n z^n + (-1)^m \sum_{n=1}^{\infty} B_n z^n,
\]

where

\[
A_n = \frac{1-\alpha}{[n]_q ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))} X_n,
\]

\[
B_n = \frac{1-\alpha}{[n]_q ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))} Y_n.
\]

Therefore

\[
\sum_{n=2}^{\infty} \frac{[n]_q ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))}{1-\alpha} A_n + \sum_{n=1}^{\infty} \frac{[n]_q ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))}{1-\alpha} B_n
\]

\[
= \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n = 1 - X_1 \leq 1,
\]

\[
= 1.
\]
and hence \(f_m(z) \in cl\mathcal{FR}_q^m(\lambda, \alpha) \). Conversely, suppose \(f_m(z) \in cl\mathcal{FR}_q^m(\lambda, \alpha) \).

Set \(X_n = \frac{[n]_q^m([n]_q - \alpha - \alpha\lambda([n]_q - 1))}{1 - \alpha} A_n \) and \(Y_n = \frac{[n]_q^m([n]_q + \alpha - \alpha\lambda([n]_q - 1))}{1 - \alpha} B_n \), where \(\sum_{n=1}^{\infty} (X_n + Y_n) = 1 \). Then

\[
\begin{align*}
X_n &= \frac{1}{1 - \alpha} \frac{1}{[n]_q}[n]_q \{|n|_q - \alpha - \alpha\lambda([n]_q - 1)\} X_n z^n \\
Y_n &= \frac{1}{1 - \alpha} \frac{1}{[n]_q}[n]_q \{|n|_q + \alpha - \alpha\lambda([n]_q - 1)\} Y_n z^n
\end{align*}
\]

\(f_m(z) = z - \sum_{n=2}^{\infty} a_n z^n + (-1)^m \sum_{n=1}^{\infty} b_n z^n \)

\[
= z - \sum_{n=2}^{\infty} \frac{1}{[n]_q^m([n]_q - \alpha - \alpha\lambda([n]_q - 1))} X_n z^n + (-1)^m \sum_{n=1}^{\infty} \frac{1}{[n]_q^m([n]_q + \alpha - \alpha\lambda([n]_q - 1))} Y_n z^n
\]

\[
= z - \sum_{n=2}^{\infty} (h_n(z) - z) X_n + \sum_{n=1}^{\infty} (g_n(z) - z) Y_n
\]

\[
= \sum_{n=1}^{\infty} (X_n h_n(z) + Y_n g_n(z))
\]

as required. \(\square \)

Next we give distortion bounds and a covering result for the class \(\mathcal{FR}_q^m(\lambda, \alpha) \).

Theorem 4. Let \(f_m \in \mathcal{FR}_q^m(\lambda, \alpha) \). Then for \(|z| = r < 1 \), we have

\[
(1 - b_1) r - \frac{1}{|2|_q^m} \left(\frac{1 - \alpha}{|2|_q - \alpha - \alpha\lambda} - \frac{1 + \alpha}{|2|_q - \alpha - \alpha\lambda} b_1 \right) r^2 \leq |f_m(z)|
\]

\[
\leq (1 + b_1) r + \frac{1}{|2|_q^m} \left(\frac{1 - \alpha}{|2|_q - \alpha - \alpha\lambda} - \frac{1 + \alpha}{|2|_q - \alpha - \alpha\lambda} b_1 \right) r^2.
\]

Proof. We only prove the right hand inequality. Taking the absolute value of \(f_m(z) \), we obtain

\[
|f_m(z)| = \left| z + \sum_{n=2}^{\infty} a_n z^n + (-1)^m \sum_{n=1}^{\infty} b_n z^n \right|
\]

\[
\leq (1 + b_1)|z| + \sum_{n=2}^{\infty} (a_n + b_n)|z|^n
\]

\[
\leq (1 + b_1) r + \sum_{n=2}^{\infty} (a_n + b_n)r^2
\]
The proof of the left hand inequality is similar and is omitted.

Corollary 2. Let $f_m(z) \in \overline{F\mathcal{R}}^m_q(\lambda, \alpha)$. Then

$$\left\{ w : |w| < \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - 1 + \alpha}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} - \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - (1 + \alpha) b_1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} \right\} \subset f_m(U).$$

Proof. For completeness, we provide a brief justification. Using the left hand inequality of Theorem 4 and letting $r \to 1$, it follows that

$$(1 - b_1) - \frac{1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} \left(\frac{1 - \alpha}{[2]_q - \alpha - \alpha \lambda} - \frac{1}{1 - \alpha} b_1 \right) = (1 - b_1) - \frac{1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} \left[1 - \alpha - (1 + \alpha) b_1 \right] = (1 - b_1) [2]^m_q([2]_q - \alpha - \alpha \lambda) - (1 - \alpha) + (1 + \alpha) b_1$$

$$= \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - [2]^m_q([2]_q - \alpha - \alpha \lambda) b_1 - (1 - \alpha) + (1 + \alpha) b_1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)}$$

$$= \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - 1 + \alpha - [2]^m_q([2]_q - \alpha - \alpha \lambda) - (1 + \alpha) b_1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)}$$

$$= \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - 1 + \alpha}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} - \frac{[2]^m_q([2]_q - \alpha - \alpha \lambda) - (1 + \alpha) b_1}{[2]^m_q([2]_q - \alpha - \alpha \lambda)} \subset f_m(U).$$

Finally we show that class $\overline{F\mathcal{R}}^m_q(\lambda, \alpha)$ is closed under convex combinations.

Theorem 5. The family $\overline{F\mathcal{R}}^m_q(\lambda, \alpha)$ is closed under convex combinations.

Proof. For $i = 1, 2, \ldots$, suppose that $f_{m_i} \in \overline{F\mathcal{R}}^m_q(\lambda, \alpha)$ where

$$f_{m_i}(z) = z - \sum_{n=2}^{\infty} a_{i,n} z^n + (-1)^m \sum_{n=2}^{\infty} b_{i,n} z^n.$$
Then, by Theorem 2
\[\sum_{n=2}^{\infty} \frac{[n]_q^m ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))}{1 - \alpha} a_{i,n} + \sum_{n=1}^{\infty} \frac{[n]_q^m ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))}{1 - \alpha} b_{i,n} \leq 1. \]

For \(\sum_{i=1}^{\infty} t_i, 0 \leq t_i \leq 1, \) the convex combination of \(f_i \) may be written as
\[\sum_{i=1}^{\infty} t_i f_{m_i}(z) = z - \sum_{n=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i a_{i,n} \right) z^n + (-1)^m \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i b_{i,n} \right) z^n. \]

Using the inequality (8), we obtain
\[\sum_{n=2}^{\infty} \frac{[n]_q^m ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))}{1 - \alpha} \left(\sum_{i=1}^{\infty} t_i a_{i,n} \right) + \sum_{n=1}^{\infty} \frac{[n]_q^m ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))}{1 - \alpha} \left(\sum_{i=1}^{\infty} t_i b_{i,n} \right) \]
\[= \sum_{i=1}^{\infty} t_i \left(\sum_{n=2}^{\infty} \frac{[n]_q^m ([n]_q - \alpha - \alpha \lambda ([n]_q - 1))}{1 - \alpha} a_{i,n} \right. \]
\[+ \left. \sum_{n=1}^{\infty} \frac{[n]_q^m ([n]_q + \alpha - \alpha \lambda ([n]_q + 1))}{1 - \alpha} b_{i,n} \right) \]
\[\leq \sum_{i=1}^{\infty} t_i = 1, \]
and therefore \(\sum_{i=1}^{\infty} t_i f_{m_i} \in \overline{HR}^m_q(\lambda, \alpha). \)

Concluding Remarks: The results of this paper for the special case \(\lambda = 0 \) yield analogous results obtained in [6]. Furthermore, by letting \(\lim_{q \to 1} \) and taking \(\lambda = 0 \) and \(m = 0 \) we obtain the analogous results for the classes studied in [7] and [5], respectively. Moreover, if we let \(\alpha = 0 \) we obtain the results given in [10].

Acknowledgement: We thank the referees for their valuable suggestions.

References

