GAUSS-WEINGARTEN AND FRENET EQUATIONS IN THE THEORY OF THE HOMOGENEOUS LIFT TO THE 2-OSCULATOR BUNDLE OF A FINSLER METRIC

Alexandru OANĂ

Communicated to:
Finsler Extensions of Relativity Theory, August 18-23, 2014, Braşov, Romania

Abstract

In this article we present a study of the subspaces of the manifold \(\text{Osc}_2^2M \), the total space of the 2-osculator bundle of a real manifold \(M \). We obtain the induced connections of the canonical \(N \)-linear metric connection determined by the homogeneous prolongation of a Finsler metric to the manifold \(\text{Osc}_2^2M \). We present the Gauss-Weingarten equations of the associated 2-osculator submanifold. We construct a Frenet frame and we determine the Frenet equations of a curve from the manifold \(\text{Osc}_2^2M \).

2000 Mathematics Subject Classification: 70S05, 53C07, 53C80.

Key words: nonlinear connection, linear connection, induced linear connection.

1 Indroduction

The Sasaki \(N \)-prolongation \(\mathcal{G} \) to the 2-osculator bundle without the null section \(\widetilde{\text{Osc}}^2_2M = \text{Osc}_2^2M \setminus \{0\} \) of a Finslerian metric \(g_{ab} \) on the real manifold \(M \) given by

\[
\mathcal{G} = g_{ab}(x, y^{(1)}) \, dx^a \otimes dx^b + g_{ab}(x, y^{(1)}) \, \delta y^{(1)a} \otimes \delta y^{(1)b} + g_{ab}(x, y^{(1)}) \, \delta y^{(2)a} \otimes \delta y^{(2)b} \quad (*)
\]

is a Riemannian structure on \(\widetilde{\text{Osc}}^2_2M \), which depends only on the metric \(g_{ab} \).

The tensor \(\mathcal{G} \) is not invariant with respect to the homotheties on the fibres of \(\text{Osc}_2^2M \), because \(\mathcal{G} \) is not homogeneous with respect to the variable \(y^{(1)a} \).

In this paper, we use a new kind of prolongation \(\tilde{\mathcal{G}} \) to \(\widetilde{\text{Osc}}^2_2M \), \(([7]) \), which depends only on the metric \(g_{ab} \). Thus, \(\tilde{\mathcal{G}} \) determines on the manifold \(\widetilde{\text{Osc}}^2_2M \) a Riemannian structure which is \(0 \)-homogeneous on the fibres of \(\text{Osc}_2^2M \).

Some geometrical properties of \(\tilde{\mathcal{G}} \) are studied: the canonical \(N \)-linear metric connection, the induced linear connections , Gauss-Weingarten and Frenet equations.

\(^1\)Department of Mathematics and Informatics, Transilvania Univ. of Braşov, ROMANIA, e-mail : alexandru.oana@unitbv.ro
\section{Preliminaries}

As far we know the general theory of submanifolds (in particular the Finsler submanifolds or the complex Finsler submanifolds) is far from being settled ([9], [3], [10], [11]). In [8] and [9] R. Miron and M. Anastasiei give the theory of subspaces in generalized Lagrange spaces. Also, in [6] and [5] R. Miron presented the theory of subspaces in higher order Finsler and Lagrange spaces respectively.

If \mathcal{M} is an immersed manifold in manifold \mathcal{M}, a nonlinear connection on $Osc^2\mathcal{M}$ induce a nonlinear connection \mathcal{N} on $Osc^2\mathcal{M}$.

The d-tensor G from (*) is not homogeneous with respect to the variable $y^{(1)a}$. This in an inconvenient from the point of view of analytical mechanics. Moreover, the physical dimensions of the terms of G are not the same. This disavantage was corrected by Gh. Atanasiu. He took a new kind of prolongation \tilde{G} to $\tilde{Osc}^2\mathcal{M}$ of the fundamental tensor of a Finsler space, [1], which depends only on the metric g_{ab}. Thus, \tilde{G} determines on the manifold $Osc^2\mathcal{M}$ a Riemannian structure which is 0-homogeneous on the fibres of $Osc^2\mathcal{M}$ and p is a positive constant required by applications in order that the physical dimensions of the terms of \tilde{G} be the same. He proved that there exist metrical N-linear connections with respect to the metric tensor \tilde{G}.

We take this canonical N-linear metric connection D on the manifold $Osc^2\mathcal{M}$ and obtain the induced tangent and normal connections and the relative covariant derivation in the algebra of d-tensor fields.

In this paper we get the Gauss-Weingarten formulae of submanifold $Osc^2\mathcal{M}$ for the homogeneos lift \tilde{G} and we construct a Frenet frame and we determine the Frenet equations of a curve from the manifold $Osc^2\mathcal{M}$.

Let us consider the Finsler space $F^n = (M, F)$ ([9]) with the fundamental function $F : TM = Osc\mathcal{M} \to \mathbb{R}$ and the fundamental tensor $g_{ab}(x, y^{(1)})$ on $Osc\mathcal{M}$, given by

$$g_{ab}(x, y^{(1)}) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^{(1)a} \partial y^{(1)b}}, \quad (2.1)$$

where $g_{ab}(x, y^{(1)})$ is positively defined on $Osc\mathcal{M}$.

The canonical 2-spray of F^n is given by

$$\frac{d^2 x^a}{dt^2} + 2G^a \left(x, \frac{dx}{dt} \right) = 0$$

where

$$G^a = \frac{1}{2} \gamma^a_{bc}(x, y^{(1)}) y^{(1)b} y^{(1)c} \quad (2.2)$$

where $\gamma^a_{bc}(x, y^{(1)})$ are the Christoffels symbols of the metric tensor $g_{ab}(x, y^{(1)})$. The canonical nonlinear connection N of the space F^n has the dual coefficients [5]

$$M^a_{\ b}^{(1)} = \frac{\partial G^a}{\partial y^{(1)b}}, \quad M^a_{\ b}^{(2)} = \frac{1}{2} \left\{ \Gamma^a_{\ bc} + M^a_{\ c} M^c_{\ b} \right\}, \quad (2.3)$$
where $\Gamma = y^{(1)a} \frac{\partial}{\partial x^a} + 2y^{(2)a} \frac{\partial}{\partial y^{(1)a}}$.

We have the next decomposition

$$T_wOsc^2M = N_0(w) \oplus N_1(w) \oplus V_2(w), \forall w \in Osc^2M. \quad (2.4)$$

The adapted basis to (2.4) is given by

$$\{ \delta_{\frac{\partial}{\partial x^a}}, \delta_{\frac{\partial}{\partial y^{(1)a}}}, \frac{\partial}{\partial y^{(2)a}} \}, \quad (a = 1, \ldots, n)$$

and its dual basis is $(dx^a, \delta y^{(1)a}, \delta y^{(2)a})$, where

$$\delta_{\frac{\partial}{\partial x^a}} = \frac{\partial}{\partial x^a} - N^{b}_{(1)a} \frac{\partial}{\partial y^{(1)b}} - N^{b}_{(2)a} \frac{\partial}{\partial y^{(2)b}} \quad (2.5)$$

and

$$\delta y^{(1)a} = dy^{(1)a} + M^{a}_{b} dx^b$$
$$\delta y^{(2)a} = dy^{(2)a} + M^{a}_{b} \delta y^b + M^{a}_{b} \delta y^{(2)b} \quad (2.6)$$

We use the next notations:

$$\delta_a = \frac{\delta}{\delta x^a}, \delta_{1a} = \frac{\delta}{\delta y^{(1)a}}, \delta_{2a} = \frac{\delta}{\delta y^{(2)a}}.$$

Proposition 2.1. The Lie brackets of the vector fields $\{ \delta_{\frac{\partial}{\partial x^a}}, \delta_{\frac{\partial}{\partial y^{(1)a}}}, \frac{\partial}{\partial y^{(2)a}} \}$ are given by

$$[\delta_b, \delta_c] = R^{a}_{(1)c} \delta_{1a} + R^{a}_{(2)c} \delta_{2a},$$
$$[\delta_b, \delta_{1c}] = B^{a}_{(1)c} \delta_{1a} + B^{a}_{(2)c} \delta_{2a},$$
$$[\delta_b, \delta_{2c}] = B^{a}_{(1)c} \delta_{1a} + B^{a}_{(2)c} \delta_{2a},$$
$$[\delta_{1b}, \delta_{1c}] = R^{a}_{(2)c} \delta_{2a},$$
$$[\delta_{1b}, \delta_{2c}] = B^{a}_{(2)c} \delta_{2a},$$

$$[\delta_{1b}, \delta_{2c}] = B^{a}_{(1)c} \delta_{2a}.$$

(2.7)
where

\[
R^a_{\ (01)bc} = \delta_cN^a_1 - \delta_bN^a_1,
\]

\[
R^a_{\ (02)bc} = \delta_cN^a_2 - \delta_bN^a_2 + N^a_f R^f_{\ (01)bc},
\]

\[
B^a_{\ (11)bc} = \delta_1cN^a_1, \quad B^a_{\ (12)bc} = \delta_1cN^a_2 - \delta_bN^a_1 + N^a_f B^f_{\ (11)bc},
\]

\[
B^a_{\ (21)bc} = \dot{\delta}_2cN^a_1, \quad B^a_{\ (22)bc} = \dot{\delta}_2cN^a_2 + N^a_f B^f_{\ (21)bc},
\]

\[
R^a_{\ (12)bc} = \delta_1cN^a_1 - \delta_1bN^a_1.
\]

The fundamental tensor g_{ab} determines on the manifold \tilde{Osc}^2M the homogeneous tensor field \mathcal{G}, [1],

\[
\mathcal{G} = g_{ab} (x, y^{(1)}) \, dx^a \otimes dx^b + g_{ab} (x, y^{(1)}) \, \delta y^{(1)a} \otimes \delta y^{(1)b} +
\]

\[
+ g_{ab} (x, y^{(1)}) \, \delta y^{(2)a} \otimes \delta y^{(2)b},
\]

where

\[
g_{ab} (x, y^{(1)}) = \frac{p^2}{\|y^{(1)}\|^2} g_{ab} (x, y^{(1)}),
\]

\[
g_{ab} (x, y^{(2)}) = \frac{p^4}{\|y^{(1)}\|^2} g_{ab} (x, y^{(1)}),
\]

\[
\|y^{(1)}\|^2 = g_{ab} y^{(1)a} y^{(1)b}.
\]

This is homogeneous tensor field with respect to $y^{(1)a}$, $y^{(2)a}$ and p is a positive constant required by applications in order that the physical dimensions of the terms of \mathcal{G} be the same.

Let \tilde{M} be a real, m-dimensional manifold, immersed in M through the immersion $i : \tilde{M} \rightarrow M$. Locally, i can be given in the form

\[
x^a = x^a (u^1, ..., u^m), \quad \text{rank} \| \frac{\partial x^a}{\partial u^\alpha} \| = m.
\]

The indices $a, b, c, ...$ run over the set $\{1, ..., n\}$ and $\alpha, \beta, \gamma, ...$ run on the set $\{1, ..., m\}$. We assume $1 \leq m < n$. We take the immersed submanifold $\tilde{Osc}^2\tilde{M}$ of the manifold Osc^2M, by the immersion $\tilde{Osc}^2i : Osc^2M \rightarrow Osc^2M$. The parametric equations of the submanifold Osc^2M are
Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift.

\[
\begin{align*}
\begin{cases}
x^a = x^a (u^1, \ldots, u^m), \, \text{rank } \| \frac{\partial x^a}{\partial u^\alpha} \| = m \\
y^{(1)a} = \frac{\partial x^a}{\partial u^\alpha} v^{(1)\alpha} \\
2 y^{(2)a} = \frac{\partial y^{(1)a}}{\partial u^\alpha} v^{(1)\alpha} + 2 \frac{\partial y^{(1)a}}{\partial v^{(1)\alpha}} v^{(2)\alpha},
\end{cases}
\end{align*}
\]

where

\[
\begin{cases}
\frac{\partial x^a}{\partial u^\alpha} = \frac{\partial y^{(1)a}}{\partial u^\alpha} = \frac{\partial y^{(2)a}}{\partial u^\alpha} \\
\frac{\partial y^{(1)a}}{\partial u^\alpha} = \frac{\partial y^{(2)a}}{\partial u^\alpha}.
\end{cases}
\]

The restriction of the fundamental function F to the submanifold $\tilde{Osc} \tilde{M}$ is

\[\tilde{F} (u, v^{(1)}) = F \left(x (u), y \left(u, v^{(1)}, v^{(2)} \right) \right)\]

and we call $\tilde{F}^m = (\tilde{M}, \tilde{F})$ the induced Finsler subspaces of F^n and \tilde{F} the induced fundamental function.

Let $B^a_\alpha (u) = \frac{\partial x^a}{\partial u^\alpha}$ and $g_{\alpha \beta}$ the induced fundamental tensor,

\[g_{\alpha \beta} (u, v^{(1)}) = g_{ab} \left(x (u), y \left(u, v^{(1)} \right) \right) B^a_\alpha B^b_\beta.\]

We obtain a system of d-vectors \{B^a_\alpha, B^a_\bar{\alpha}\} which determines a moving frame $\mathcal{R} = \{(u, v^{(1)}, v^{(2)}); B^a_\alpha (u), B^a_{\bar{\alpha}} (u, v^{(1)}, v^{(2)})\}$ in $Osc^2 \tilde{M}$ along the submanifold $Osc^2 \tilde{M}$.

Its dual frame will be denoted by $\mathcal{R}^* = \{B^a_\alpha (u, v^{(1)}, v^{(2)}), B^a_{\bar{\alpha}} (u, v^{(1)}, v^{(2)})\}$. This is also defined on an open set $\pi^{-1} (\tilde{U}) \subset Osc^2 \tilde{M}$, \tilde{U} being a domain of a local chart on the submanifold \tilde{M}.

The conditions of duality are given by:

\[B^a_\beta B^\alpha_a = \delta^\alpha_\beta, \quad B^a_\beta B^\bar{\alpha}_a = 0, \quad B^a_\alpha B^\alpha_a = 0, \quad B^\alpha_a B^\beta_a = \delta^\alpha_\beta\]

\[B^a_\alpha B^a_\beta + B^a_{\bar{\alpha}} B^a_{\bar{\beta}} = \delta^a_b.\]

The restriction of the of the nonlinear connection N to $Osc^2 \tilde{M}$ uniquely determines an induced nonlinear connection \tilde{N} on $Osc^2 \tilde{M}$ with the dual coefficients ([2],[13])

\[
\begin{align*}
\tilde{M}^{\alpha}_{\beta} &= B^a_{\alpha} \left(B^a_{\beta} + M^a_b B^b_{\beta} \right), \\
\tilde{M}^{\alpha}_{\bar{\beta}} &= B^a_{\alpha} \left(\frac{\partial B^a_{\beta}}{\partial u^\alpha} v^{(1)\delta} v^{(1)\gamma} + B^a_{\delta \beta} v^{(2)\delta} + M^a_b B^b_{\beta} + M^a_{\beta b} B^b_{\beta} \right),
\end{align*}
\]

where $M^a_1 b$, $M^a_2 b$ are the dual coefficients of the N.

The cobasis \((dx^i, \delta y^{(1)a}, \delta y^{(2)a})\) restricted to \(Osc^2M\) is uniquely represented in the moving frame \(R\) in the following form ([2], [12]):

\[
\begin{cases}
 dx^a = B^a_{\beta} du^\beta \\
 \delta y^{(1)a} = B^a_\alpha \delta v^{(1)\alpha} + B^a_\beta K^\beta_{(1)\alpha} du^\beta \\
 \delta y^{(2)a} = B^a_\alpha \delta v^{(2)\alpha} + B^a_\beta K^\beta_{(2)\alpha} du^\alpha
\end{cases}
\]

(2.13)

where

\[
K^\alpha_{(1)\beta} = B^a_\alpha \left(B^a_{0\beta} + M^a_{(1)\beta} B^b_{_{(1)b}} \right)
\]

\[
K^\alpha_{(2)\beta} = B^a_\alpha \left(\frac{1}{2} \partial B^a_{\gamma\delta} v^{(1)\gamma} + B^a_{\delta\beta} v^{(2)\delta} + M^a_{(1)\beta} B^b_{(1)\beta} + M^a_{(2)\beta} B^b_{(2)\beta} - B^a_{\gamma} B_{d}^{\gamma} \left(M^a_{(1)\beta} B^b_{(1)\beta} \right) \right)
\]

(2.14)

are mixed d-tensor fields.

A linear connection \(D\) on the manifold \(Osc^2M\) is called \textbf{metrical N-linear connection} with respect to \(\hat{G}\), if \(D\hat{G} = 0\) and \(D\) preserves by parallelism the distributions \(N_0, N_1\) and \(V_2\). The coefficients of the N-linear connections \(D\Gamma (N)\) will be denoted with \(\left(L^a_{(i)bc} \right), \left(V^a_{(i)bc} \right)\), \((i = 0, 1, 2)\). \(\) \(\)

Theorem 2.2. ([1]) There exist metrical \(N\)-linear connections \(D\Gamma (N)\) on \(Osc^2M\), with respect to the homogeneous prolongation \(\hat{G}\), which depend only on the metric \(g_{ab}(x, y^{(1)})\). One of these connections has

the ”horizontal” coefficients

\[
H^a_{(0)bc} = \frac{1}{2} g^{ad} \left(\delta_b g_{cd} + \delta_c g_{bd} - \delta_d g_{bc} \right)
\]

\[
L^a_{(10)bc} = \frac{1}{2} g^{ad} \left(\delta_b g_{cd} + \delta_c g_{bd} - \delta_d g_{bc} \right)_{(1)}
\]

(2.15)

\[
V^a_{(10)bc} = \frac{1}{2} g^{ad} \left(\delta_b g_{cd} + \delta_c g_{bd} - \delta_d g_{bc} \right)_{(1)}
\]

\[
V^a_{(20)bc} = \frac{1}{2} g^{ad} \left(\delta_b g_{cd} + \delta_c g_{bd} - \delta_d g_{bc} \right)_{(2)}
\]
Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift.

the "1-vertical" coefficients

\[
\frac{H}{(01)}_{bc} = \frac{1}{2} g^{ad} (\delta_{db} g_{cd} + \delta_{dc} g_{bd} - \delta_{1d} g_{bc})
\]
\[
\frac{V_1}{(11)}_{bc} = \frac{1}{2} g^{ad} \begin{pmatrix}
\delta_{db} g_{(1)cd} + \delta_{dc} g_{bd} - \delta_{1d} g_{(1)bc} \\
\delta_{db} g_{(2)cd} + \delta_{dc} g_{bd} - \delta_{1d} g_{(2)bc}
\end{pmatrix}
\]

and the "2-vertical" coefficients

\[
\frac{H}{(02)}_{bc} = \frac{V_1}{(12)}_{bc} = \frac{V_2}{(22)}_{bc} = 0.
\]

It is called the canonical N-linear metric connection.

This linear connection will be used throughout this paper.

For this N-linear connection, we have the operators \(V_i \) \((i = 0, 1, 2; V_0 = H)\) which are given by the following relations

\[
V_i DX^a = dX^a + V_i^a X^b, \forall X \in \mathcal{F}\left(\tilde{Osc}^2 M\right),
\]

where

\[
\frac{H}{(00)}_{bc} = \frac{H}{(01)}_{bc} \frac{\delta y(1)}{c} + \frac{H}{(02)}_{bc} \frac{\delta y(2)}{c}
\]
\[
\frac{V_1}{(10)}_{bc} = \frac{V_1}{(11)}_{bc} \frac{\delta y(1)}{c} + \frac{V_1}{(12)}_{bc} \frac{\delta y(2)}{c}
\]
\[
\frac{V_2}{(20)}_{bc} = \frac{V_2}{(21)}_{bc} \frac{\delta y(1)}{c} + \frac{V_2}{(22)}_{bc} \frac{\delta y(2)}{c}.
\]

We call these operators the horizontal, 1- and 2-vertical covariant differentials. The 1-forms \(H^a_b, V_1^a_b, V_2^a_b \) will be called the horizontal, 1- and 2-vertical 1-form. From (2.17) we get that the horizontal, 1- and 2-vertical 1-form are

\[
\frac{H}{(00)}_{bc} = \frac{H}{(01)}_{bc} \frac{\delta y(1)}{c} + \frac{H}{(02)}_{bc} \frac{\delta y(2)}{c}
\]
\[
\frac{V_1}{(10)}_{bc} = \frac{V_1}{(11)}_{bc} \frac{\delta y(1)}{c} + \frac{V_1}{(12)}_{bc} \frac{\delta y(2)}{c}
\]
\[
\frac{V_2}{(20)}_{bc} = \frac{V_2}{(21)}_{bc} \frac{\delta y(1)}{c} + \frac{V_2}{(22)}_{bc} \frac{\delta y(2)}{c}.
\]
3 The relative covariant derivatives

Let $D\Gamma(N)$, the canonical N-linear metric connection of the manifold $Osc^2 M$. A classical method to determine the laws of derivation on a Finsler submanifold is the type of the coupling([5],[6],[8],[9]).

Definition 3.1. We call a coupling of the canonical N-linear metric connection D to the induced nonlinear connection \tilde{N} along $\tilde{\text{Osc}}^2 M$ the operators V_i defined by the operators $D_i(i = 0, 1, 2; V_0 = H) \ (2.18)$ with the property

$$V_i DX^a = V_i DX^a, \ (i = 0, 1, 2; V_0 = H) \text{ (modulo 2.13)} \ (3.1)$$

Here

$$V_i DX^a = dX^a + V_i \omega^a_b X^b, \ \forall X \in \mathcal{F}(\tilde{Osc}^2 M). \ (3.2)$$

The 1-forms $\tilde{\omega}^a_{(i)} b, (i = 0, 1, 2)$ are the connection 1-forms of the coupling \tilde{D}.

Theorem 3.2. The coupling of the N-linear connection D to the induced nonlinear connection \tilde{N} along $\tilde{\text{Osc}}^2 M$ is locally given by the set of coefficients $\tilde{D}\Gamma(N) = \left(\begin{array}{c} V_i \\ \tilde{L}^a_{(i0)} \tilde{b} \\ \tilde{C}^a_{(i1)} b \\ \tilde{C}^a_{(i2)} b \end{array} \right)$, $(i = 0, 1, 2; V_0 = H)$ where

$$V_i \tilde{L}^a_{(i0)} b = \tilde{L}^a_{(i0)} b + \tilde{C}^a_{(i1)} b \delta^d K^\delta_{(1)}$$

$$V_i \tilde{C}^a_{(i1)} b = \tilde{C}^a_{(i1)} b$$

$$V_i \tilde{C}^a_{(i2)} b = 0, (i = 0, 1, 2; V_0 = H). \ (3.3)$$

Proof. From (3.1), (3.2), (2.18), and (2.13) we obtain

$$V_i \tilde{L}^a_{(i0)} b = \tilde{L}^a_{(i0)} b + \tilde{C}^a_{(i1)} b \delta^d K^\delta_{(1)} + \tilde{C}^a_{(i2)} b \delta^d K^\delta_{(2)}$$

$$V_i \tilde{C}^a_{(i1)} b = \tilde{C}^a_{(i1)} b + \tilde{C}^a_{(i2)} b \delta^d K^\delta_{(1)}$$

$$V_i \tilde{C}^a_{(i2)} b = \tilde{C}^a_{(i2)} b, (i = 0, 1, 2; V_0 = H).$$

and from (2.17) we get (3.3).
Definition 3.3. We call the **induced tangent connection** on $\tilde{\text{Osc}}^2 \tilde{M}$ by the canonical N-linear metric connection D, the couple of the operators D^\perp, $(i = 0, 1, 2; V_0 = H)$ which are defined by

$$D^\perp X^\alpha = B^\alpha_d DX^b, \quad \text{for } X^a = B^a_\gamma X^\gamma$$

(3.4)

where

$$D^\perp X^\alpha = dX^\alpha + X^\beta V^\alpha_{\beta \gamma},$$

(3.5)

and $V^\alpha_{\beta \gamma}$, $(i = 0, 1, 2; V_0 = H)$ are called the **tangent connection 1-forms**.

We have

Theorem 3.4. The tangent connections 1-forms are as follows:

$$V^\alpha_{\beta \gamma} = V^\alpha_{(i0)} \delta_{\beta \delta} \delta_{\gamma \delta} + V^\alpha_{(i1)} \delta_{\beta \delta} \delta_{\gamma \delta} + V^\alpha_{(i2)} \delta_{\beta \delta} \delta_{\gamma \delta},$$

(3.6)

where

$$V^\alpha_{(i0)} \delta_{\beta \delta} = B^\alpha_d \left(B^d_\beta + B^d_\beta L^d_\beta \delta_{\gamma \delta} \right),$$

$$V^\alpha_{(i1)} \delta_{\beta \delta} = B^\alpha_d B^d_\beta \tilde{C}^d_\beta \delta_{\gamma \delta},$$

$$V^\alpha_{(i2)} \delta_{\beta \delta} = 0, (i = 0, 1, 2; V_0 = H).$$

Proof. From (3.2), (3.5) and (3.4) we have

$$V^\alpha_{(i0)} \delta_{\beta \delta} = B^\alpha_d \left(B^d_\beta + B^d_\beta L^d_\beta \delta_{\gamma \delta} \right),$$

$$V^\alpha_{(i1)} \delta_{\beta \delta} = B^\alpha_d B^d_\beta \tilde{C}^d_\beta \delta_{\gamma \delta},$$

$$V^\alpha_{(i2)} \delta_{\beta \delta} = B^\alpha_d B^d_\beta \tilde{C}^d_\beta \delta_{\gamma \delta}, (i = 0, 1, 2; V_0 = H).$$

and from (2.17) we get (3.7).

Definition 3.5. We call the **induced normal connection** on $\tilde{\text{Osc}}^2 \tilde{M}$ by the canonical N-linear metric connection D, the couple of the operators D^\perp, $(i = 0, 1, 2; V_0 = H)$ which are defined by

$$D^\perp X^\alpha = B^\alpha_d DX^b, \quad \text{for } X^a = B^a_\gamma X^\gamma$$

(3.8)
where
\[V_i D^\bot X^\beta = dX^\beta + X^\beta V_i \]
and \(V_i \), \((i = 0, 1, 2; V_0 = H)\) are called the normal connection 1-forms.

We have

Theorem 3.6. The normal connections 1-forms are as follows:

\[V_i \omega_{ij} = L_i^{(0)} du^\delta + C_i^{(1)} \delta v^{(1)} + C_i^{(2)} \delta v^{(2)} \]

where

\[L_i^{(0)} = B_{i}^{\delta \alpha} \left(\frac{\partial B_{\beta}^{\delta}}{\partial u^\alpha} + B_{\beta}^{f} L_i^{(0)} f_\delta \right) \]

\[C_i^{(1)} = B_{i}^{\delta \alpha} \left(\frac{\partial B_{\beta}^{\delta}}{\partial u^\alpha} + B_{\beta}^{f} C_i^{(1)} f_\delta \right) \]

\[C_i^{(2)} = 0, \quad (i = 0, 1, 2; V_0 = H) \]

Proof. From (3.2),(3.8),(3.9) and (2.13) we obtain

\[L_i^{(0)} = B_{i}^{\delta \alpha} \left(\frac{\partial B_{\beta}^{\delta}}{\partial u^\alpha} + B_{\beta}^{f} L_i^{(0)} f_\delta \right) \]

\[C_i^{(1)} = B_{i}^{\delta \alpha} \left(\frac{\partial B_{\beta}^{\delta}}{\partial u^\alpha} + B_{\beta}^{f} C_i^{(1)} f_\delta \right) \]

\[C_i^{(2)} = 0, \quad (i = 0, 1, 2; V_0 = H) \]

Now, we can define the relative (or mixed) covariant derivatives \(V_i \), \((i = 0, 1, 2; V_0 = H)\).

Theorem 3.7. The relative covariant (mixed) derivatives in the algebra of mixed d-tensor fields are the operators \(V_i \), \((i = 0, 1, 2; V_0 = H)\) for which the following properties hold:

\[V_i \nabla f = df, \quad \forall f \in \mathcal{F}(Osc^2 M) \]

\[V_i \nabla X^\alpha = D^\alpha, \quad V_i \nabla X^\alpha = D^\bot X^\alpha, \quad V_i \nabla X^\alpha = D^\bot X^\alpha, \quad (i = 0, 1, 2; V_0 = H) \]
V_i, ω^α_b, ω^β_α, ω^π_β are called the connection 1-forms of $\nabla_i, (i = 0, 1, 2; V_0 = H)$.

4 The Gauss-Weingarten formulae

In the theory of the submanifolds we are interested in finding the moving equations of the moving frame R along $Osc^2 M$.

These equations, called also Gauss-Weingarten formulae, are obtained when the relative covariant derivatives of the vector fields from R are expressed again in the frame R.

Thus we have

Theorem 4.1. The following Gauss-Weingarten formulae hold:

$$\nabla_i B^a_\alpha = B^a_\delta \Pi^\delta_\alpha,$$

$$\nabla_i B'^a_\alpha = -B'^a_\delta \Pi'^\delta_\alpha,$$

where

$$\Pi^\delta_\alpha = H^{(0)}_{\alpha} \delta^\delta_\beta d^\beta + H^{(1)}_{\alpha} \delta^\delta_\beta \delta v^{(1)\beta} + H^{(2)}_{\alpha} \delta^\delta_\beta \delta v^{(2)\beta},$$

$$\Pi'^\delta_\alpha = g^{\alpha\sigma} \delta^\delta_\beta \Pi'^\sigma_\alpha,$$

and the d-tensors

$$H^{(0)}_{\alpha} \delta^\delta_\beta = B^d_\alpha \left(B^d_\alpha + B^f_\alpha L^d_{(10)f\beta} \right),$$

$$H^{(1)}_{\alpha} \delta^\delta_\beta = B^f_\alpha C^d_{(1) f\beta},$$

$$H^{(2)}_{\alpha} \delta^\delta_\beta = B^f_\alpha C^d_{(2) f\beta},$$

are the fundamental d-tensors of the second order of manifold $Osc^2 M$, $(i = 0, 1, 2, V_0 = H)$.

Proof. From (2.15), (2.16) and (2.17) we have

\[H \nabla B^a_\alpha = B^a_{\alpha | \beta \delta} du^\beta + B^a_\alpha |_{0 \beta} \delta V^{(1)\delta} + B^a_\alpha |_{0 \beta} \delta V^{(2)\delta} \]

\[= \left(\frac{\delta B^a_\alpha}{\delta u^\beta} + \frac{H}{(00)_{\beta \delta}} B^b_\beta - \frac{H}{(00)_{\alpha \beta}} B^a_\delta \right) du^\beta + \]

\[+ \left(\frac{\delta B^a_\alpha}{\delta v^{(1)\beta}} + \frac{C_{(p1)_{\beta \delta}}^a}{\alpha \beta} B^b_\alpha - \frac{H}{(01)_{\alpha \beta}} B^a_\delta \right) \delta V^{(1)\beta} + \]

\[+ \left(\frac{\delta B^a_\alpha}{\delta v^{(2)\beta}} + \frac{\delta C_{(p2)_{\beta \delta}}^a}{\alpha \beta} B^b_\alpha - \frac{H}{(02)_{\alpha \beta}} B^a_\delta \right) \delta V^{(2)\beta} \]

\[= B^a_{\alpha \beta} du^\beta + B^b_\alpha \left(\frac{H}{(00)_{\beta \delta}} du^\beta + \frac{C_{(01)_{\beta \delta}}^a}{\alpha \beta} \delta V^{(1)\beta} + \frac{H}{(02)_{\beta \delta}} \delta V^{(2)\beta} \right) - \]

\[- B^a_\delta \left[B^d_\beta \left(B^d_{\alpha \beta} + B^d_\alpha \frac{H}{(00)_{f \delta}} \right) du^\beta + B^d_\beta B^d_{\alpha \beta} \frac{H}{(01)_{f \beta}} \delta V^{(1)\beta} + \right] \]

\[+ B^d_\beta B^d_\alpha \frac{H}{(02)_{f \beta}} \delta V^{(2)\beta} \].

Using (4.3) we get the relation (4.1) for \(V_0 = H \).

Now, by applying \(H \nabla \) to the both sides of the equations \(g_{ab} B^a_\alpha B^b_\beta = 0 \) one get

\[g_{ab} B^a_\delta B^b_\beta + g_{ab} B^a_\alpha H B^b_\beta = 0. \]

Multiplying these relation with \(B^a_\alpha \) we obtain

\[g_{bd} H \nabla B^b_\beta - B^a_\delta B^b_\gamma H \nabla B^b_\beta = -B^a_\delta B^\delta_{\beta \gamma} H. \]

But \(B^a_\delta B^b_\delta g_{ab} \nabla B^b_\beta = 0 \). Consequently, we obtain the relations (4.2) for \(V_0 = H \).

Analogously, for the operators \(V_i, (i = 1, 2) \) one gets the other relations.

\(\square \)

5 Curves in the manifold \(\text{Osc}^2 M \)

In this section we construct a Frenet frame and determine the Frenet equations for a curve in the manifold \(\text{Osc}^2 M \).

The start point of these researchs is the Bejancu and Farran results in case of vertical bundle of \(TM \) ([3]). We construct a Frenet frame and derive all the Frenet equations for a
curve in the manifold \(\widetilde{\text{Osc}^2 M} \). This enables us to state a fundamental theorem for curves in manifold \(\widetilde{\text{Osc}^2 M} \).

Let \(c : t \to (x^a(t)) \) a smooth curve in \(M \), \(t \) a real parameter and \(s(t) \) a parameter change. On the manifold \(\text{Osc}^2 M \) with the local coordinates \((x^a, y^{(1)a}, y^{(2)a})\), the curve \(c \) induce a curve \(C \) with the property

\[
(x^a(t), y^{(1)a}(t)) = \frac{dx^a}{dt}, \quad y^{(2)a}(t) = \frac{1}{2} \frac{d^2 x^a}{dt^2}.
\]

If we change the parameter on \(C \), we have

\[
y^{(1)a}(s) = \frac{ds}{dt} \frac{dx^a}{ds} = v^{(1)} \frac{dx^a}{ds},
\]

\[
y^{(2)a}(s) = \frac{1}{2} \frac{d}{dt} (v^{(1)} \frac{dx^a}{ds}) = \frac{1}{2} \left(\frac{d^2 s}{dt^2} \frac{dx^a}{ds} + \left(v^{(1)} \right)^2 \frac{d^2 x^a}{ds^2} \right)\]

\[(5.1)\]

where we noted

\[
v^{(1)} = \frac{ds}{dt}, \quad v^{(2)} = \frac{d^2 s}{dt^2}.
\]

Thus, on \(C \), we may consider the parameters \((s, v^{(1)}, v^{(2)})\), and from the above calculus we get the parametric equations in \(s \):

\[
\begin{align*}
x^a &= x^a(s), \\
y^{(1)a} &= v^{(1)} \frac{dx^a}{ds}, \\
2y^{(2)a} &= v^{(2)} \frac{dx^a}{ds} + \left(v^{(1)} \right)^2 \frac{d^2 x^a}{ds^2}.
\end{align*}
\]

We use notation \(x'^a = \frac{dx^a}{ds} \) and \(x''^a = \frac{d^2 x^a}{ds^2} \), thus the above equations become:

\[
\begin{align*}
x^a &= x^a(s), \\
y^{(1)a} &= v^{(1)} x'^a, \\
2y^{(2)a} &= v^{(2)} x'^a + \left(v^{(1)} \right)^2 x''^a.
\end{align*}
\]

The tangent vectors along \(C \) are \(\left\{ \frac{\partial}{\partial s}, \frac{\partial}{\partial v^{(1)}}, \frac{\partial}{\partial v^{(2)}} \right\} \), and their connection with the tangent vectors \(\left\{ \frac{\partial}{\partial x'^a}, \frac{\partial}{\partial y^{(1)a}}, \frac{\partial}{\partial y^{(2)a}} \right\} \) is obtained by using the Jacobi matrix of these transformations

\[
\frac{\partial}{\partial s} = x'^a \frac{\partial}{\partial x'^a} + v^{(1)} x'^a \frac{\partial}{\partial y^{(1)a}} + \left(v^{(1)^2} x'^a + v^{(2)} x'^a \right) \frac{\partial}{\partial y^{(2)a}},
\]

\[
\frac{\partial}{\partial v^{(1)}} = x'^a \frac{\partial}{\partial y^{(1)a}} + v^{(1)} x'^a \frac{\partial}{\partial y^{(2)a}};
\]

\[
\frac{\partial}{\partial v^{(2)}} = x'^a \frac{\partial}{\partial y^{(2)a}};
\]
Let \((M,F)\) a Finsler space and \(g_{ab}(x,y^{(1)}) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^a \partial y^b}\) the fundamental tensor and
\(s(t) = \int_0^t F(x(t),y^{(1)}(t)) \, dt\) the arc length parameter on \(C\). We have \(\frac{ds}{dt} = F(x(t),y^{(1)}(t))\) along of curve \(C\). A consequence of homogeneity of \(F\) it follows that \(v^{(1)} = \frac{ds}{dt} = F(x(t),v^{(1)}(t)) = F(x(s),v^{(1)}(s)) = \frac{v^{(1)}}{F}(x(s),y^{(1)}(s))\). We deduce that \(F(x(s),y^{(1)}(s)) = 1\), which is true on \(C\) restrictioned to the manifold \(Osc^1 M \equiv TM\).

Let \(G\) the Sasaki prolongation of the fundamental tensor \(g_{ab}\) to the manifold \(Osc^2 M\), (*)

\[
G = g_{ab}(x,y^{(1)}) \, dx^a \otimes dx^b + g_{ab}(x,y^{(1)}) \, \delta y^{(1)a} \otimes \delta y^{(1)b} +
+ g_{ab}(x,y^{(1)}) \, \delta y^{(2)a} \otimes \delta y^{(2)b}
\]

and \(\nabla_i\), the canonical \(N\)-linear metric connection on the manifold \(Osc^2 M\), with the coefficients

\[
L_{(i0)}^{a}{}_{bc} = \frac{1}{2} g^{ad} \left(\delta_b g_{cd} + \delta_c g_{bd} - \delta_d g_{bc} \right)
\]

\[
C_{(i1)}^{a}{}_{bc} = \frac{1}{2} g^{ad} \left(\delta_{1b} g_{cd} + \delta_{1c} g_{bd} - \delta_{1d} g_{bc} \right) \quad (i = 0, 1, 2) \quad (5.2)
\]

\[
C_{(i2)}^{a}{}_{bc} = 0,
\]

and \(\nabla_i\), \((i = 0, 1, 2)\) the covariant derivatives operators.

Let

\[
g_{ab}^{a}{}_{c} = \frac{1}{2} g^{ad} \frac{\partial g_{bd}}{\partial y^{(1)c}} \quad (5.3)
\]

and \(\nabla_i\), the \(N\)-linear connection of Berwald type with the coefficients

\[
\begin{pmatrix}
L_{(00)}^{b}{}_{bc}, & L_{(10)}^{b}{}_{bc}, & L_{(20)}^{b}{}_{bc}, & C_{(01)}^{b}{}_{bc}, & C_{(11)}^{b}{}_{bc}, & C_{(21)}^{b}{}_{bc}, & C_{(02)}^{b}{}_{bc}, & C_{(12)}^{b}{}_{bc}, & C_{(22)}^{b}{}_{bc}
\end{pmatrix} \quad (5.4)
\]

where

\[
L_{(00)}^{b}{}_{bc} = L_{(00)}^{a}{}_{bc}, \quad L_{(10)}^{b}{}_{bc} = L_{(10)}^{a}{}_{bc}, \quad L_{(20)}^{b}{}_{bc} = L_{(20)}^{a}{}_{bc}, \quad C_{(01)}^{b}{}_{bc} = C_{(01)}^{a}{}_{bc}, \quad C_{(11)}^{b}{}_{bc} = C_{(11)}^{a}{}_{bc}, \quad C_{(21)}^{b}{}_{bc} = C_{(21)}^{a}{}_{bc}, \\
C_{(02)}^{b}{}_{bc} = C_{(02)}^{a}{}_{bc}, \quad C_{(12)}^{b}{}_{bc} = C_{(12)}^{a}{}_{bc}, \quad C_{(22)}^{b}{}_{bc} = C_{(22)}^{a}{}_{bc}, \\
B_{(00)}^{b}{}_{bc} = B_{(00)}^{a}{}_{bc}, \quad B_{(10)}^{b}{}_{bc} = B_{(10)}^{a}{}_{bc}, \quad B_{(20)}^{b}{}_{bc} = B_{(20)}^{a}{}_{bc},
\]

\[
\begin{pmatrix}
C_{(01)}^{a}{}_{bc} = 0, & C_{(11)}^{a}{}_{bc}, & C_{(21)}^{a}{}_{bc} = 0, \\
C_{(02)}^{a}{}_{bc} = 0, & C_{(12)}^{a}{}_{bc} = 0, & C_{(22)}^{a}{}_{bc} = 0
\end{pmatrix} \quad (5.5)
\]
where \(L_{(00)}^{a} \), \(C_{(11)}^{a} \), \(C_{(22)}^{a} \), and \(B_{(11)}^{a} \), \(B_{(22)}^{a} \) are given by the formulas (5.2) and (2.8),

\[
B_{(11)}^{a} = \delta_{1c}N_{1}^{a}b, \quad B_{(12)}^{a} = \delta_{1c}N_{2}^{a}b - \delta_{b}N_{1}^{a}c + N_{1}^{a}f, \quad B_{(21)}^{a} = \delta_{1c}N_{1}^{a}b - \delta_{1b}N_{1}^{a}c.
\]

Then, we have

\[
\mathbb{G} \left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}} \right) = g_{ab} \left(x(t), \dot{x}(t) \right) \frac{dx^{a}}{dt} \frac{dx^{b}}{dt}.
\]

(5.6)

If we take the parameter \(s \), it follows that

\[
\mathbb{G} \left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}} \right) = g_{ab}x^{a}x^{b} = F^{2}(x(s), y^{(1)}(s)) = 1.
\]

(5.7)

We study geometric objects along curve \(C \) in points \((x^{a}(s), y^{(1)a}(s), y^{(2)a}(s)) \) where \(v^{(1)} \neq 0 \).

An other consequence of homogeneity of \(F \) is that \(g_{ab}, g^{ab} \) and \(L_{(00)}^{a} \) (2.15) (or \(L_{(00)}^{a} \), \(i = 0, 1, 2 \) from (5.2)) are positive homogeneous of degree zero, while \(G^{a}, G_{b}^{a} \) and \(g_{b}^{a}c \), (5.3), are positive homogeneous of degrees 2, 1 and -1. The functions \(G^{a} \) (2.2) are

\[
G^{a}(x, y^{(1)}) = \frac{1}{4}g^{ab}(x, y^{(1)}) \left(\frac{\partial^{2} F^{*}}{\partial y^{(1)b}} \partial x^{c}y^{(1)c} - \frac{\partial F^{*}}{\partial x^{b}} \right)(x, y^{(1)}), \quad F^{*} = F^{2}.
\]

We deduce:

\[
g_{ab}(x(s), v^{(1)}x^{c}(s)) = g_{ab}(x(s), x^{c}(s)),
\]

(5.8)

\[
g^{ab}(x(s), v^{(1)}x^{c}(s)) = g^{ab}(x(s), x^{c}(s)),
\]

\[
x^{b}(s) L_{(00)}^{a} \left(x(s), v^{(1)}x^{c}(s) \right) = x^{b}(s) L_{(00)}^{a} \left(x(s), x^{c}(s) \right) = G_{b}^{a}(x(s), x^{c}(s)),
\]

(5.9)

\[
x^{b}(s) G_{b}^{a} \left(x(s), v^{(1)}x^{c}(s) \right) = v^{(1)}x^{b}(s) G_{b}^{a} \left(x(s), x^{c}(s) \right) = 2v^{(1)}G^{a}(x(s), x^{c}(s)),
\]

(5.10)

\[
x^{b}(s) g_{b}^{a}c(x(s), x^{c}(s)) = 0,
\]

(5.11)

\[
g_{b}^{a}c(x(s), v^{(1)}x^{c}(s)) = \frac{1}{v^{(1)}} g_{b}^{a}c(x(s), x^{c}(s)).
\]

Remark 5.1. Here and in the sequel we use the vector notations \(x(s) \) and \(x^{c}(s) \) to represent the vectors \((x^{0}(s), ..., x^{m}(s)) \) and \((x^{0}(s), ..., x^{m}(s)) \), respectively. Also, the components of a geometric object \(T_{def...}^{abc...} \) at the point \((x(s), x^{c}(s)) \) we denote them by \(T_{def...}^{abc...}(s) \).
We say that a vector field \(X \in \mathcal{X} \left(\tilde{Osc}^2 M \right) \) along \(Osc^2 \mathcal{C} \) is **projectable on** \(\mathcal{C} \) if locally at any point \((x(s), v^{(1)}x'(s), y^{(2)a}(s)) \in \tilde{Osc}^2 \mathcal{C} \) we have

\[
X \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) = X^{(0)a}(s) \frac{\delta}{\delta x^a} \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) + X^{(1)a}(s) \frac{\delta}{\delta y^{(1)a}} \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) + X^{(2)a}(s) \frac{\partial}{\partial y^{(2)a}} \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right),
\]

or, equivalently, the local components of \(X \) at any point of \(\mathcal{C} \) depend only on the arc length parameter \(s \) of \(\mathcal{C} \). The above name is justified because \(X \) given by (5) on \(Osc^2 \mathcal{C} \) defines a vector field \(X^* \) on \(\mathcal{C} \) by the formula

\[
X^* \left(x(s) \right) = X^{(2)a}(s) \frac{\partial}{\partial x^a} \left(x(s) \right).
\]

Thus \(X^* \left(x(s) \right) \) can be considered as the projection of the vector field \(X \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) \) on the tangent space \(TM \) at \(x(s) \in \mathcal{C} \). As an example, \(\frac{\partial}{\partial y^{(2)a}} \) is a projectable vector field. Also we shall see later that a Frenet frame for a curve on the manifold \(\tilde{Osc}^2 M \) contains only projectable vector fields.

Let \(D\Gamma (N) \), the canonical \(N \)-linear metric connection (5.2) and \(B\Gamma (N) \), the \(N \)-linear connection on Berwald type from (5.4), and \(\tilde{\nabla}_i, \tilde{\nabla}_j, (i = 0, 1, 2) \) are the covariant derivatives of these \(N \)-linear connections.

Proposition 5.2. The covariant derivatives of any projectable vector field \(X \) in the direction of \(\frac{\delta}{\delta v^{(1)}} \) or \(\frac{\partial}{\partial v^{(2)}} \) with respect to \(D\Gamma (N) \) and \(B\Gamma (N) \) vanish identically on \(\tilde{Osc}^2 \mathcal{C} \), that is we have

\[
\left(\nabla_{\frac{\delta}{\delta v^{(1)}}} X \right) \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) = 0,
\]

\[
\left(\nabla_{\frac{\partial}{\partial v^{(2)}}} X \right) \left(x(s), v^{(1)}x'(s), y^{(2)a}(s) \right) = 0, \forall s \in (-\varepsilon, \varepsilon),
\]

where \(\nabla_i \) are \(\nabla_{c(i)} \) or \(\nabla_{b(i)} \), \((i = 0, 1, 2) \).

Proof. We have

\[
X^{(0)a}(s) \frac{\delta}{\delta x^a} + X^{(1)a}(s) \frac{\delta}{\delta y^{(1)a}} + X^{(2)a}(s) \frac{\partial}{\partial y^{(2)a}},
\]

\[
x(s), v^{(1)}x'(s), y^{(2)a}(s) \right).
\]

\[
X^* \left(x(s) \right) = X^{(2)a}(s) \frac{\partial}{\partial x^a} \left(x(s) \right).
\]
Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift.

where

\[X^{(i)a}(s) \big|_{i} = X^{(i)b}(s) x^{c} C_{(ij)}^{a} b_{c} = 0, \]

since for the above N-linear connections we have either

\[C_{(ij)}^{a} b_{c} = g^{a} b_{c} \text{ or } C_{(ij)}^{a} b_{c} = 0, \]

where \(i \in \{0, 1, 2\} \), \(j \in \{1, 2\} \).

Hence, in particular, we have

\[\nabla_{(i)} \frac{\partial}{\partial y^{(2)a}} = 0, \]

which enables us to state that the "vertical" covariant derivatives along \(C \) with respect to the canonical N-linear metric connection and of the Berwald type (5.4) do not provide any Frenet frame for \(C \). Hence we have to proceed with the horizontal covariant derivatives along \(C \).

From (2.5), we get

\[\frac{\partial}{\partial s} = \frac{dx^{a}}{ds} \frac{\delta}{\delta x^{a}} + v^{(1)} \left(\frac{d^{2}x^{a}}{ds^{2}} + 2G^{a}(s) \right) \frac{\delta}{\delta y^{(1)a}} + v^{(2)} \left[\frac{d^{2}x^{a}}{ds^{2}} + 2\tilde{G}^{a}(s, v^{(1)}) \right] \frac{\partial}{\partial y^{(2)a}}, \]

where \(\tilde{G}^{a}(s, v^{(1)}) = \frac{1}{2v^{(2)}} \left(\frac{ds}{d\delta} \frac{M^{a}}{2} + \frac{d^{2}x^{a}}{ds^{2}} G^{b}(s) v^{(1)} + \frac{d^{2}x^{a}}{ds^{2}} (v^{(1)})^{2} \right) \).

The canonical N-linear metric connection is the best choice for studying the geometry of curves in the manifold \(\tilde{Osc}^{2}M \). First, by direct calculation we get

\[\nabla_{(i)} \frac{\partial}{\partial v^{(2)}} = \left(\frac{d^{2}x^{a}}{ds^{2}} + 2G^{a}(s) \right) \frac{\partial}{\partial y^{(2)a}}, \]

On the other hand, using (5.7) and taking into account that \(D\Gamma(N) \) is a metric N-linear connection we obtain

\[\nabla_{(i)} \frac{\partial}{\partial v^{(2)}} = 0, (i = 0, 1, 2). \]

As a consequence of (5.15) we may set

\[\nabla_{(i)} \frac{\partial}{\partial v^{(2)}} = k_{1} N_{1}, \]

where \(N_{1} \in V_{2}T(Osc^{2}C)^{\perp} \), and

\[k_{1} = \left| \nabla_{(i)} \frac{\partial}{\partial v^{(2)}} \right|, \]
for \(i = 0, 1, 2 \) and \(\|X\| = \mathcal{G}(X, X), \forall X \in \mathcal{X}\left(\widehat{\text{Osc}}^2 M\right) \). By (5.14) we infer that

\[
k_1 = \left\{ g_{ab}(s)(x^n + 2G^n(s))(x^n + 2G^n(s)) \right\}^{1/2}
\]

(5.18)

and it call the geodesic curvature (first curvature) function of \(C \). If \(k_1(s) \neq 0, \forall s \in (-\epsilon, \epsilon) \) we call

\[
N_1 = \frac{1}{k_1(s)} (x^n + 2G^n(s)) \frac{\partial}{\partial y^{(2)a}} = N_1(s) \frac{\partial}{\partial y^{(2)a}}, \quad (5.19)
\]

the principal (first) normal of \(C \). Clearly, \(N_1 \) is a projectable vector field along \(C \). Actually, this is a consequence of the following general result.

Proposition 5.3. The covariant derivatives of a projectable vector field \(X \) along \(C \) with respect to the canonical \(N \)-linear metric connection in the direction of \(\frac{\partial}{\partial s} \) is a projectable vector field too, given by

\[
\nabla_{(i)} \frac{\partial}{\partial s} X = \left[\frac{dX^{(0)a}}{ds} + X^{(0)b}S^a_b(s) \right] \frac{\delta}{\delta x^a} + \\
+ \left[\frac{dX^{(1)a}}{ds} + X^{(1)b}S^a_b(s) \right] \frac{\delta}{\delta y^{(1)a}} + \\
+ \left[\frac{dX^{(2)a}}{ds} + X^{(2)b}S^a_b(s) \right] \frac{\partial}{\partial y^{(2)a}}, \quad (i = 0, 1, 2)
\]

(5.20)

where

\[
S^a_b(s) = G^a_b(s) + (x^n + 2G^n(s)) g^{a,c}_b(s).
\]

(5.21)

Proof. The assertion follows by direct calculation using (5.13), (5.9) and (5.11). \(\Box \)

Next, suppose that \(n+1 > 2 \). Since \(\mathcal{D} \Gamma(N) \) is the canonical \(N \)-linear metric connection, from \(\mathcal{G}(N_1, N_1) = 1 \) and \(\mathcal{G}\left(\frac{\partial}{\partial y^{(1)}}, N_1 \right) = 0 \) using (5.16) we deduce that

\[
\mathcal{G}\left(\nabla_{(i)} \frac{\partial}{\partial s} N_1, N_1 \right) = 0, \quad \mathcal{G}\left(\nabla_{(i)} \frac{\partial}{\partial s} N_1, \frac{\partial}{\partial y^{(2)}} \right) = -k_1, \quad (i = 0, 1, 2).
\]

Hence we may set

\[
\nabla_{(i)} \frac{\partial}{\partial s} N_1 = -k_1 \frac{\partial}{\partial y^{(2)}} + N,
\]

(5.22)

where \(N \in V_2Osc^2C \).

Thus we may define the next function

\[
k_2 = \left\| k_1(s) \frac{\partial}{\partial y^{(2)}} + \nabla_{(i)} \frac{\partial}{\partial s} N_1 \right\|.
\]
Then by straightforward calculation using (5.19) and (5.20) we infer that

\[k_2 = \left\{ g_{ab} \left(k_1 x^a + N_1^a + N_1^c S^a_c \right) \left(k_1 x^b + N_1^b + N_1^d S^a_d \right) \right\}^{1/2}. \]

(5.23)

The function \(k_2 \) is called the **second curvature function** of \(C \).

If \(k_2(s) \neq 0, \forall (-\varepsilon, \varepsilon) \), we define the vector field

\[N_2 = \frac{1}{k_2(s)} \left(k_1(s) \frac{\partial}{\partial v(2)} + \nabla_{(i)} \frac{\partial}{\partial s} N_1 \right). \]

Hence, (5.22) becomes

\[\nabla_{(i)} \frac{\partial}{\partial s} N_1 = -k_1 \frac{\partial}{\partial v(2)} + k_2(s) N_2(s), (i = 0, 1, 2). \]

We suppose inductively that there exist orthonormal projectable vector fields \(\left\{ N_0 = \frac{\partial}{\partial v(2)}, N_1, ..., N_j \right\} \) and nowhere zero curvature functions \(\left\{ k_1, k_2, ..., k_j \right\}, 1 \leq j \leq n, \) such that the following equations hold

\[(F_1) \ \nabla_{(i)} \frac{\partial}{\partial s} N_0 = k_1 N_1, \]

\[(F_2) \ \nabla_{(i)} \frac{\partial}{\partial s} N_1 = -k_1 N_0 + k_2 N_2, \]

\[... \]

\[(F_j) \ \nabla_{(i)} \frac{\partial}{\partial s} N_{j-1} = -k_{j-1} N_{j-2} + k_j N_j, (i = 0, 1, 2). \]

Then by using the Proposition 5.3 and following a proof similar to that of the Finsler case (cf. Bejancu, Farran [3], p.156), for any \(j < n \) we obtain

\[(F_{j+1}) \ \nabla_{(i)} \frac{\partial}{\partial s} N_j = -k_j N_{j-1} + k_{j+1} N_{j+1}, \]

where

\[k_{j+1} = \left\{ g_{ab} \left(k_j N^a_{j-1} + N_j^a + N_j^c S^a_c \right) \left(k_j N^b_{j-1} + N_j^b + N_j^d S^a_d \right) \right\}^{1/2}. \]

(5.25)

Moreover, the system of vector fields \(\left\{ N_0, N_1, ..., N_j \right\} \) is an orthonormal set of projectable vector fields along \(C \).

If \(j = n \), then \(\left\{ N_0, N_1, ..., N_j \right\} \) is an orthonormal basis of \(\mathcal{X}V_2T \left(\text{Osc}^2 C \right)^\perp \). As \(\nabla_{(i)} \frac{\partial}{\partial s} N_n \)

is orthogonal to \(N_n \), the equation \((F_{j+1})\) becomes

\[(F_{n+1}) : \nabla_{(i)} \frac{\partial}{\partial s} N_n = -k_n N_{n-1}, (i = 0, 1, 2). \]
We call the system of vector fields \(\{N_0, N_1, ..., N_n\} \) and the equations \(\{(F_1), ..., (F_{n+1})\} \) the Frenet frame and the Frenet equations along \(C \) respectively. If \(k_j = 0 \) on \((-\varepsilon, \varepsilon)\), for some \(j < n \), then we can not define \(N_j \). Thus the equation \((F_j) \) becomes

\[
(F_j)': \nabla_{\xi} N_{j-1} = -k_{j-1}N_{j-2}, (i = 0, 1, 2).
\]

Thus, in the case in which there exist nowhere zero curvature functions \(\{k_1, k_2, ..., k_{j-1}\} \) on \((-\varepsilon, \varepsilon)\) and \(k_j \) is everywhere zero on \((-\varepsilon, \varepsilon)\), then we have constructed the Frenet frame \(\{N_0, N_1, ..., N_{j-1}\} \) satisfying the Frenet equations \(\{(F_1), ..., (F_{j-1}), (F_j)\}' \). We obtain the following fundamental theorem for curves in the manifold \(\tilde{Osc}^2 M \).

Theorem 5.4. Let \((x_0, y_0^{(1)}, y_0^{(2)}) = (x_0^a, y_0^{(1)a}, y_0^{(2)a}) \) be a fixed point of the manifold \(\tilde{Osc}^2 M \), \(\{V_0, V_1, ..., V_n\} \) an orthonormal basis of \(V_2T(\tilde{Osc}^2 M) \) and \(k_1, k_2, ..., k_n : (-\varepsilon, \varepsilon) \rightarrow R \) be everywhere positive smooth functions. Then exists a unique curve \(C \) on given by equations \(x^a = x^a(s), y^{(1)a} = y^{(1)a}(s), y^{(2)a} = y^{(2)a}(s), s \in (-\varepsilon, \varepsilon) \), where \(s \) is the arc length parameter of \(C \), such that \((x^a(0), y^{(1)a}(0), y^{(2)a}(0)) = (x_0^a, y_0^{(1)a}, y_0^{(2)a}) \) and \(k_1, k_2, ..., k_n \) are the curvature functions of \(C \) with respect to the Frenet frame \(\{N_0, N_1, ..., N_n\} \) which satisfies \(\tilde{N}_h(0) = V_h \), \(h \in \{0, ..., n\} \).

Proof. We can use the Theorem 2.1,[3], p.158.

Remark 5.5.

1. If we consider the homogenous lift \(\mathcal{G} \), (2.9), we obtain

\[
0^\mathcal{G} \left(\frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}} \right) = p^4
\]

and (5.15) becomes

\[
\mathcal{G} \left(\nabla_\xi \frac{\partial}{\partial v^{(2)}}, \frac{\partial}{\partial v^{(2)}} \right) = 0.
\]

2. The curvature geodesic functions become

\[
0^{k_{j+1}} = \left\{ g_{ab}(s) \left(k_j N_{j-1}^a + N_{j}^{(a) \alpha} + N_{j}^{(b) \alpha} S_{\alpha}^c \right) \left(k_j N_{j-1}^b + N_{j}^{(b) \alpha} + N_{j}^{(d) \alpha} S_{\alpha}^d \right) \right\}^{1/2}
\]

\[
= p^2 k_{j+1}, (j = 0, 1, ..., n - 1).
\]

Acknowledgement 5.6. The present work was developed under the auspices of Grant 2565/2014 – BRFFR – RA No. F14RA-006, within the cooperation framework between Romanian Academy and Belarusian Republican Foundation for Fundamental Research. A version of this paper was presented at X-th International Conference "Finsler Extensions of Relativity Theory", August 18 - 24, 2014, Brasov, Romania.
Gauss-Weingarten and Frenet equations in the theory of the homogeneous lift.

References

