ON SOME CONDITIONS FOR UNIVALENCE

Horiana TUDOR

Abstract

We present some sufficient conditions for univalence in terms of the coefficients of an analytic functions.

2000 Mathematics Subject Classification: 30C45.
Key words: analytic functions, starlike functions, convex functions, univalence criteria.

1 Introduction

Let A be the class of analytic functions f in the unit disk $U = \{z \in \mathbb{C}: |z| < 1\}$ of the form

$$f(z) = z + a_2 z^2 + \ldots + a_n z^n \ldots , \quad z \in U$$ (1)

Let S denote the class of functions $f \in A$, f univalent in U. The usual subclasses of S consisting of starlike, convex and uniformly convex functions will be denoted by ST, CV and respectively UCV.

Given the sequence of coefficients (a_n) in (1), how does this sequence influence the geometric properties of f and can we decide if f is univalent in U? So, it is well-known that if f is given by (1) and

$$\sum_{n=2}^{\infty} n |a_n| \leq 1,$$

then f is univalent in U. The same condition assures that f is a starlike function. (see[1]).

In [2] Goodman gave the sufficient condition

$$\sum_{n=2}^{\infty} 3n(n-1) |a_n| \leq 1,$$

for the function f of the form (1) to be uniformly convex. An improvement of this condition was obtained in [5]. If

$$\sum_{n=2}^{\infty} n(2n-1) |a_n| \leq 1,$$

1Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania, e-mail: htudor@unitbv.ro
then the function f of the form (1) is in UCV.

The above results are related to the univalence of an analytic function f in U. We are interesting if similar conditions can assure the analyticity and the univalence of a family of functions defined by an integral operator. Our considerations are based on the following results.

2 Preliminaries

Theorem 1. ([6]). Let $f \in A$, $\alpha \in \mathbb{C}$, $|\alpha - 1| < 1$. If for all $z \in U$
\[|f'(z) - 1| < 1, \]
then the function
\[F_\alpha(z) = \left(\alpha \int_0^z u^{\alpha-1} f'(u) \, du \right)^{1/\alpha} \]
is analytic and univalent in U, where the principal branch is intended.

Theorem 2. ([3]). Let $f \in A$, $\alpha \in \mathbb{C}$, $\text{Re} \alpha \geq 1$. If the inequality
\[\left| zf'(z) f(z) - 1 \right| < 1 \]
(4)
is true for all $z \in U$, then the function F_α defined by (3) is analytic and univalent in U.

Theorem 3. ([4]). Let $f \in A$, $\beta \in \mathbb{C}$, $\text{Re} \beta > 0$. If
\[\left| \frac{zf''(z)}{f'(z)} \right| \leq 1, \]
(5)
for all $z \in U$, then for all complex numbers α, $\text{Re} \alpha \geq \text{Re} \beta$, the function F_α defined by (3) is analytic and univalent in U.

3 Main results

Theorem 4. Let $f \in A$, $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $z \in U$. If
\[\sum_{n=2}^{\infty} n |a_n| < 1, \]
(6)
then f is univalent in U and for all $\alpha \in \mathbb{C}$, $|\alpha - 1| < 1$, the functions
\[F_\alpha(z) = z \cdot \left[1 + \sum_{n=2}^{\infty} \frac{n \alpha a_n}{\alpha + n - 1} z^{n-1} \right]^{1/\alpha} \]
is analytic and univalent in U.
Proof. For all \(z \in U \), the condition (2) of Theorem 1 is verified.

\[
|f'(z) - 1| = \left| \sum_{n=2}^{\infty} n a_n z^{n-1} \right| \leq \sum_{n=2}^{\infty} n |a_n| < 1.
\]

Thus \(f(z) = F_1(z) \) is univalent and for every \(\alpha \in \mathbb{C}, |\alpha - 1| < 1 \), the functions \(F_\alpha \) defined by (7) are analytic and univalent in \(U \).

Theorem 5. Let \(f \in A, f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ z \in U \). If

\[
\sum_{n=2}^{\infty} n |a_n| < 1, \tag{8}
\]

then \(f \) is starlike in \(U \) and for all \(\alpha \in \mathbb{C}, \text{Re}\alpha \geq 1 \), the functions \(F_\alpha \) defined by (7) are analytic and univalent in \(U \).

Proof. It is easy to verify that the assumption (4) of Theorem 2 is satisfied. If (8) holds, then \(\sum_{n=2}^{\infty} n |a_n| < 1 \) and it follows

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{a_2 z + \ldots + (n-1)a_n z^{n-1} + \ldots}{1 + a_2 z + \ldots + a_n z^{n-1} + \ldots} \right| \leq \frac{\sum_{n=2}^{\infty} (n-1) |a_n|}{1 - \sum_{n=2}^{\infty} |a_n|}
\]

The last expression is bounded above by 1 if \(\sum_{n=2}^{\infty} n |a_n| < 1 \). Since (4) implies \(\text{Re} \frac{zf'(z)}{f(z)} > 0 \) we deduce that \(f \) is starlike in \(U \) and in view of Theorem 2, the functions \(F_\alpha \) are analytic and univalent in \(U \).

Theorem 6. Let \(f \in A, f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \ z \in U \). If

\[
\sum_{n=2}^{\infty} n(n-1) |a_n| < \frac{27 - 6\sqrt{3}}{23} \approx 0.722, \tag{9}
\]

then \(f \) is univalent in \(U \) and for all \(\alpha \in \mathbb{C}, \text{Re}\alpha \geq 1 \), the functions \(F_\alpha \) defined by (7) are analytic and univalent in \(U \).

Proof. First, we note that Theorem 3 improves Becker’s univalence criterion. Indeed, for \(\beta = 1 \), the condition (5) becomes

\[
(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq 1, \quad z \in U
\]

and assures the univalence of the function \(f \) and also of the functions \(F_\alpha \) defined by (3), for all \(\alpha \in \mathbb{C}, \text{Re}\alpha \geq 1 \). We consider now the function \(h : [0, 1] \rightarrow \mathbb{R}, h(x) = x(1 - x^2) \) which has a maximum value in the point \(x_0 = \sqrt{3}/3 \), namely

\[
0 < h(x) \leq \frac{2\sqrt{3}}{9}, \quad x \in [0, 1].
\]
It follows that
\[
(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \leq \frac{2\sqrt{3}}{9} \cdot \max_{z \in U} \left| \frac{f''(z)}{f'(z)} \right| \leq 1,
\]
for
\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{3\sqrt{3}}{2} \quad z \in U. \tag{10}
\]
Suppose that \(\sum_{n=2}^{\infty} n(n-1)|a_n| \leq v < 1\). Then \(\sum_{n=2}^{\infty} n |a_n| < v\) and
\[
\frac{1}{1 - \sum_{n=2}^{\infty} n|a_n|} < \frac{1}{1 - v}
\]
For all \(z \in U\) we have
\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{\sum_{n=2}^{\infty} n(n-1)|a_n|}{1 - \sum_{n=2}^{\infty} n|a_n|}
\]
Therefore, the inequality (10) is satisfied if
\[
\sum_{n=2}^{\infty} n(n-1)|a_n| < \frac{3\sqrt{3}}{2 + 3\sqrt{3}} = \frac{27 - 6\sqrt{3}}{23}.
\]
Thus, in view of Theorem 3, for all \(\alpha \in \mathbb{C}\), \(\Re \alpha \geq 1\), the functions \(F_\alpha\) defined by (7) are analytic and univalent in \(U\).

The following result improves the bounded (9) given in Theorem 6.

Theorem 7. Let \(f \in A\), \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n\), \(z \in U\). If
\[
\sum_{n=2}^{\infty} n(2n + 3\sqrt{3} - 2) |a_n| < 3\sqrt{3} \tag{11}
\]
then \(f\) is univalent in \(U\) and for all \(\alpha \in \mathbb{C}\), \(\Re \alpha \geq 1\), the functions \(F_\alpha\) defined by (7) are analytic and univalent in \(U\).

Proof. In view of Theorem 6, we have
\[
\left| \frac{f''(z)}{f'(z)} \right| \leq \frac{\sum_{n=2}^{\infty} n(n-1)|a_n|}{1 - \sum_{n=2}^{\infty} n|a_n|}
\]
The last expression is bounded above by \(3\sqrt{3}/2\) if \(\sum_{n=2}^{\infty} n(2n + 3\sqrt{3} - 2) |a_n| < 3\sqrt{3}\). □

Taking into account the result of paper [5], we can give the following

Corollary 1. If \(\sum_{n=2}^{\infty} n(2n + 3\sqrt{3} - 2) |a_n| \leq 1\), then the function \(f\) of the form (1) is in \(UCV\) and for all \(\alpha \in \mathbb{C}\), \(\Re \alpha \geq 1\), the functions \(F_\alpha\) defined by (7) are analytic and univalent in \(U\).
References

